0000000000433877
AUTHOR
Spyridon Dendrinos
Uniform estimates for the local restriction of the Fourier transform to curves
We prove sharp estimates, with respect to the ane arclength measure, for the restriction of the Fourier transform to a class of curves in R^d that includes curves of nite type. This measure possesses certain invariance and mitigation properties which are important in establishing uniform results. Peer reviewed
Uniform estimates for the X-ray transform restricted to polynomial curves
We establish near-optimal mixed-norm estimates for the X-ray transform restricted to polynomial curves with a weight that is a power of the affine arclength. The bounds that we establish depend only on the spatial dimension and the degree of the polynomial. Some of our results are new even in the well-curved case.