0000000000434461

AUTHOR

Zelentsova Es

Insulator proteins contribute to expression of gene loci repositioned into heterochromatin in the course ofDrosophilaevolution

AbstractPericentric heterochromatin inDrosophilais generally composed of repetitive DNA forming a transcriptionally repressive environment. Nevertheless, dozens of genes were embedded into pericentric genome regions during evolution ofDrosophilidaelineage and retained functional activity. However, factors that contribute to “immunity” of these gene loci to transcriptional silencing remain unknown. Here, we investigated molecular evolution of the essentialMybandRanbp16genes. These protein-coding genes reside in euchromatic loci of chromosome X inD. melanogasterand related species, while in other studiedDrosophilaspecies, including evolutionary distant ones, they are located in genomic region…

research product

Adaptation of gene loci to heterochromatin in the course of Drosophila evolution is associated with insulator proteins.

AbstractPericentromeric heterochromatin is generally composed of repetitive DNA forming a transcriptionally repressive environment. Dozens of genes were embedded into pericentromeric heterochromatin during evolution of Drosophilidae lineage while retaining activity. However, factors that contribute to insusceptibility of gene loci to transcriptional silencing remain unknown. Here, we find that the promoter region of genes that can be embedded in both euchromatin and heterochromatin exhibits a conserved structure throughout the Drosophila phylogeny and carries motifs for binding of certain chromatin remodeling factors, including insulator proteins. Using ChIP-seq data, we demonstrate that ev…

research product