0000000000435095

AUTHOR

Lídia Puertas-umbert

showing 2 related works from this author

Stenosis coexists with compromised α1-adrenergic contractions in the ascending aorta of a mouse model of Williams-Beuren syndrome

2020

Williams-Beuren syndrome (WBS) is a rare disorder caused by a heterozygous deletion of 26-28 contiguous genes that affects the brain and cardiovascular system. Here, we investigated whether WBS affects aortic structure and function in the complete deletion (CD) mouse model harbouring the most common deletion found in WBS patients. Thoracic aortas from 3-4 months-old male CD mice and wild-type littermates were mounted in wire myographs or were processed for histomorphometrical analysis. Nitric oxide synthase (NOS) isoforms and oxidative stress levels were assessed. Ascending aortas from young adult CD mice showed moderate (50%) luminal stenosis, whereas endothelial function and oxidative str…

0301 basic medicineMaleWilliams SyndromeThromboxaneAdrenergiclcsh:MedicineAorta ThoracicNitric Oxide Synthase Type I030204 cardiovascular system & hematologymedicine.disease_causeAortic diseasesPhenylephrine0302 clinical medicineEthidiumMalalties hereditàrieslcsh:ScienceStenosisMultidisciplinarybiologyAnimal models in researchNitric oxide synthaseAortic Stenosis SupravalvularCardiovascular diseasesmedicine.drugGenetic diseasesmedicine.medical_specialtyNitric OxideArticle03 medical and health sciencesInternal medicinemedicine.arteryReceptors Adrenergic alpha-1Ascending aortamedicineAnimalsEstenosiPhenylephrinebusiness.industryMalalties cardiovascularslcsh:Rmedicine.diseaseValvular diseaseMice Mutant StrainsBlockadeElastinStenosisDisease Models AnimalOxidative Stress030104 developmental biologyEndocrinologybiology.proteinlcsh:QEndothelium VascularModels animals en la investigacióbusinessOxidative stressScientific Reports
researchProduct

Uric acid treatment after stroke modulates the Krüppel-like factor 2-VEGF-A axis to protect brain endothelial cell functions: Impact of hypertension

2019

Uric acid (UA) is a promising protective treatment in ischaemic stroke, but the precise molecular targets underlying its in vivo beneficial actions remain unclear. High concentrations of UA inhibit angiogenesis of cultured endothelial cells via Krüppel-like factor 2 (KLF)-induced downregulation of vascular endothelial growth factor (VEGF), a pro-angiogenic mediator that is able to increase blood–brain barrier (BBB) permeability in acute stroke. Here, we investigated whether UA treatment after ischaemic stroke protects brain endothelial cell functions and modulates the KLF2-VEGF-A axis. Transient intraluminal middle cerebral artery (MCA) occlusion/reperfusion was induced in adult male sponta…

0301 basic medicineMaleVascular Endothelial Growth Factor AVascular endothelial growth factor-AAngiogenesisBiochemistryRats Inbred WKYAntioxidantschemistry.chemical_compound0302 clinical medicineRats Inbred SHRIschaemic strokeEvans BlueBlood-brain barrierBrainKrüppel-like factor 2Vascular endothelial growth factorEndothelial stem cellStrokeVascular endothelial growth factor Amedicine.anatomical_structureNeuroprotective AgentsTreatment OutcomeBlood-Brain Barrier030220 oncology & carcinogenesisHypertensioncardiovascular systemmedicine.symptommedicine.medical_specialtyKruppel-Like Transcription FactorsBrain damageBlood–brain barrierNeuroprotectionCell Line03 medical and health sciencesDouble-Blind MethodInternal medicinemedicineAnimalsHumanscardiovascular diseasesPharmacologybusiness.industryRatsUric Acid030104 developmental biologyEndocrinologychemistryEndothelium VascularAngiogenesisbusinessBiomarkers
researchProduct