0000000000435169
AUTHOR
Lucile Julien
Deuteron charge radius and Rydberg constant from spectroscopy data in atomic deuterium
We give a pedagogical description of the method to extract the charge radii and Rydberg constant from laser spectroscopy in regular hydrogen (H) and deuterium (D) atoms, that is part of the CODATA least-squares adjustment (LSA) of the fundamental physical constants. We give a deuteron charge radius Rd from D spectroscopy alone of 2.1415(45) fm. This value is independent of the measurements that lead to the proton charge radius, and five times more accurate than the value found in the CODATA Adjustment 10. The improvement is due to the use of a value for the 1S->2S transition in atomic deuterium which can be inferred from published data or found in a PhD thesis.
The next generation of laser spectroscopy experiments using light muonic atoms
Precision spectroscopy of light muonic atoms provides unique information about the atomic and nuclear structure of these systems and thus represents a way to access fundamental interactions, properties and constants. One application comprises the determination of absolute nuclear charge radii with unprecedented accuracy from measurements of the 2S - 2P Lamb shift. Here, we review recent results of nuclear charge radii extracted from muonic hydrogen and helium spectroscopy and present experiment proposals to access light muonic atoms with Z ≥ 3. In addition, our approaches towards a precise measurement of the Zemach radii in muonic hydrogen (μp) and helium (μ 3He+) are discussed. These resul…