0000000000435344

AUTHOR

Bert B.a. De Vries

showing 7 related works from this author

Loss-of-function and missense variants in NSD2 cause decreased methylation activity and are associated with a distinct developmental phenotype

2021

Purpose Despite a few recent reports of patients harboring truncating variants in NSD2, a gene considered critical for the Wolf–Hirschhorn syndrome (WHS) phenotype, the clinical spectrum associated with NSD2 pathogenic variants remains poorly understood. Methods We collected a comprehensive series of 18 unpublished patients carrying heterozygous missense, elongating, or truncating NSD2 variants; compared their clinical data to the typical WHS phenotype after pooling them with ten previously described patients; and assessed the underlying molecular mechanism by structural modeling and measuring methylation activity in vitro. Results The core NSD2-associated phenotype includes mostly mild dev…

0301 basic medicineIn silicoBiologyArticleREGION03 medical and health sciencesROGERS-DANKS-SYNDROME0302 clinical medicineMissense mutationHISTONE H3GeneGenetics (clinical)Loss functionGeneticsNeurodevelopmental disorders Donders Center for Medical Neuroscience [Radboudumc 7]DELETIONDEFECTSMethylationPhenotypeLYSINE 36030104 developmental biologyMolecular mechanismWOLF-HIRSCHHORN-SYNDROME030217 neurology & neurosurgeryFunction (biology)Rare cancers Radboud Institute for Health Sciences [Radboudumc 9]Genetics in Medicine
researchProduct

BCL11A intellectual developmental disorder: defining the clinical spectrum and genotype-phenotype correlations

2021

AbstractPurposeHeterozygous variants in BCL11A underlie an intellectual developmental disorder with persistence of fetal hemoglobin (BCL11A-IDD, a.k.a. Dias-Logan syndrome). We sought to delineate the genotypic and phenotypic spectrum of BCL11A-IDD.MethodsWe performed an in-depth analysis of 42 patients with BCL11A-IDD ascertained through a collaborative network of clinical and research colleagues. We also reviewed 33 additional affected individuals previously reported in the literature or available through public repositories with clinical information.ResultsMolecular and clinical data analysis of 75 patients with BCL11A-IDD identified 60 unique variants (30 frameshift, 7 missense, 6 splic…

business.industryPostnatal microcephalyMicrodeletion syndromemedicine.diseaseBioinformaticsHypotoniaDevelopmental disorderAutism spectrum disorderIntellectual disabilityFetal hemoglobinmedicineMissense mutationmedicine.symptombusiness
researchProduct

Recurrent Mutations in the Basic Domain of TWIST2 Cause Ablepharon Macrostomia and Barber-Say Syndromes

2015

Contains fulltext : 153827.pdf (Publisher’s version ) (Open Access) Ablepharon macrostomia syndrome (AMS) and Barber-Say syndrome (BSS) are rare congenital ectodermal dysplasias characterized by similar clinical features. To establish the genetic basis of AMS and BSS, we performed extensive clinical phenotyping, whole exome and candidate gene sequencing, and functional validations. We identified a recurrent de novo mutation in TWIST2 in seven independent AMS-affected families, as well as another recurrent de novo mutation affecting the same amino acid in ten independent BSS-affected families. Moreover, a genotype-phenotype correlation was observed, because the two syndromes differed based s…

Models MolecularCandidate geneHirsutismProtein ConformationHeLa Cellmedicine.disease_causeTranscriptomeTwist transcription factorModelsGenetics(clinical)ExomeEye AbnormalitiesNon-U.S. Gov'tExomeGenetics (clinical)ZebrafishGeneticsMutationMicroscopyMacrostomiaSetleis syndromeHypertelorismResearch Support Non-U.S. Gov'tHypertrichosiEyelid DiseaseGENÉTICAPhenotypeEyelid DiseasesAbnormalitiesMultipleSequence AnalysisHumanChromatin ImmunoprecipitationMolecular Sequence DataMutation MissenseHypertrichosisAbnormalities; Multiple; Amino Acid Sequence; Animals; Base Sequence; Chromatin Immunoprecipitation; Exome; Eye Abnormalities; Eyelid Diseases; HeLa Cells; Hirsutism; Humans; Hypertelorism; Hypertrichosis; Macrostomia; Microscopy; Electron; Molecular Sequence Data; Mutation; Missense; Protein Conformation; Repressor Proteins; Sequence Analysis; DNA; Skin Abnormalities; Twist Transcription Factor; Zebrafish; Models; Molecular; Phenotype; Genetics; Genetics (clinical)Other Research Radboud Institute for Molecular Life Sciences [Radboudumc 0]BiologyResearch SupportElectronArticleFrameshift mutationGeneticAblepharon macrostomia syndromeSkin AbnormalitieGeneticsmedicineJournal ArticleAnimalsHumansAbnormalities MultipleAmino Acid SequenceNeurodevelopmental disorders Donders Center for Medical Neuroscience [Radboudumc 7]Base SequenceAnimalTwist-Related Protein 1MolecularSequence Analysis DNADNARepressor Proteinmedicine.diseaseRepressor ProteinsTwist Transcription FactorEye AbnormalitieMicroscopy ElectronMutationSkin Abnormalitiessense organsMissenseNanomedicine Radboud Institute for Molecular Life Sciences [Radboudumc 19]HeLa CellsAmerican journal of human genetics
researchProduct

Genome-wide variant calling in reanalysis of exome sequencing data uncovered a pathogenic TUBB3 variant.

2021

Almost half of all individuals affected by intellectual disability (ID) remain undiagnosed. In the Solve-RD project, exome sequencing (ES) datasets from unresolved individuals with (syndromic) ID (n = 1,472 probands) are systematically reanalyzed, starting from raw sequencing files, followed by genome-wide variant calling and new data interpretation. This strategy led to the identification of a disease-causing de novo missense variant in TUBB3 in a girl with severe developmental delay, secondary microcephaly, brain imaging abnormalities, high hypermetropia, strabismus and short stature. Interestingly, the TUBB3 variant could only be identified through reanalysis of ES data using a genome-wi…

ProbandExome sequencingAdolescentDevelopmental Disabilitieslnfectious Diseases and Global Health Radboud Institute for Molecular Life Sciences [Radboudumc 4]Mutation MissenseComputational biologyBiologyGenomeExonAll institutes and research themes of the Radboud University Medical CenterTubulinIntellectual DisabilitySolve-RDExome SequencingGeneticsCoding regionMissense mutationHumansTUBB3GeneGenetics (clinical)Exome sequencingSequence (medicine)Neurodevelopmental disorders Donders Center for Medical Neuroscience [Radboudumc 7]ERN ITHACABrainMetabolic Disorders Radboud Institute for Molecular Life Sciences [Radboudumc 6]General MedicineGenome-wide variant callingStrabismusFaceMicrocephalyFemaleEuropean journal of medical genetics
researchProduct

De Novo and Inherited Pathogenic Variants in KDM3B Cause Intellectual Disability, Short Stature, and Facial Dysmorphism

2019

Contains fulltext : 202646.pdf (Publisher’s version ) (Open Access) By using exome sequencing and a gene matching approach, we identified de novo and inherited pathogenic variants in KDM3B in 14 unrelated individuals and three affected parents with varying degrees of intellectual disability (ID) or developmental delay (DD) and short stature. The individuals share additional phenotypic features that include feeding difficulties in infancy, joint hypermobility, and characteristic facial features such as a wide mouth, a pointed chin, long ears, and a low columella. Notably, two individuals developed cancer, acute myeloid leukemia and Hodgkin lymphoma, in childhood. KDM3B encodes for a histone …

0301 basic medicineMaleJumonji Domain-Containing Histone DemethylasesDevelopmental DisabilitiesWEAVER SYNDROMEPROTEINHaploinsufficiencyCraniofacial AbnormalitiesHistones0302 clinical medicineIntellectual disabilityTumours of the digestive tract Radboud Institute for Molecular Life Sciences [Radboudumc 14]Missense mutationDEMETHYLASE KDM3BExomeChildGenetics (clinical)Exome sequencingGeneticsRUBINSTEIN-TAYBI SYNDROMEMetabolic Disorders Radboud Institute for Molecular Life Sciences [Radboudumc 6]Phenotype030220 oncology & carcinogenesisFemalemedicine.symptomHaploinsufficiencyRare cancers Radboud Institute for Health Sciences [Radboudumc 9]Joint hypermobilityGENETICSJMJD1CMutation MissenseDwarfismBiologyShort statureKdm3b ; Cancer Predisposition ; Developmental Delay ; Facial Recognition ; Intellectual Disability ; Leukemia ; Lymphoma ; Short Stature03 medical and health sciencesReportIntellectual DisabilitymedicineHumansMYELOID-LEUKEMIAGenetic Association StudiesGerm-Line MutationWeaver syndromeNeurodevelopmental disorders Donders Center for Medical Neuroscience [Radboudumc 7]Rubinstein–Taybi syndromeMUTATIONSDELETIONGenetic Variationmedicine.diseaseBody HeightMusculoskeletal AbnormalitiesINDIVIDUALS030104 developmental biologyFaceNanomedicine Radboud Institute for Molecular Life Sciences [Radboudumc 19]American Journal of Human Genetics
researchProduct

DLG4-related synaptopathy: a new rare brain disorder

2021

Contains fulltext : 245031.pdf (Publisher’s version ) (Closed access) PURPOSE: Postsynaptic density protein-95 (PSD-95), encoded by DLG4, regulates excitatory synaptic function in the brain. Here we present the clinical and genetic features of 53 patients (42 previously unpublished) with DLG4 variants. METHODS: The clinical and genetic information were collected through GeneMatcher collaboration. All the individuals were investigated by local clinicians and the gene variants were identified by clinical exome/genome sequencing. RESULTS: The clinical picture was predominated by early onset global developmental delay, intellectual disability, autism spectrum disorder, and attention deficit-hyp…

0301 basic medicineAutism Spectrum Disorder[SDV]Life Sciences [q-bio]030105 genetics & heredityBiology03 medical and health sciencesIntellectual DisabilityIntellectual disabilitymedicineMissense mutationHumansGlobal developmental delayExomeGenetics (clinical)GeneticsBrain DiseasesNeurodevelopmental disorders Donders Center for Medical Neuroscience [Radboudumc 7]Brainmedicine.disease030104 developmental biologyPhenotypeRenal disorders Radboud Institute for Molecular Life Sciences [Radboudumc 11]Autism spectrum disorderNeurodevelopmental DisordersSynaptopathyDLG4Postsynaptic densityDisks Large Homolog 4 Protein
researchProduct

SPEN haploinsufficiency causes a neurodevelopmental disorder overlapping proximal 1p36 deletion syndrome with an episignature of X chromosomes in fem…

2021

Contains fulltext : 231702.pdf (Publisher’s version ) (Closed access) Deletion 1p36 (del1p36) syndrome is the most common human disorder resulting from a terminal autosomal deletion. This condition is molecularly and clinically heterogeneous. Deletions involving two non-overlapping regions, known as the distal (telomeric) and proximal (centromeric) critical regions, are sufficient to cause the majority of the recurrent clinical features, although with different facial features and dysmorphisms. SPEN encodes a transcriptional repressor commonly deleted in proximal del1p36 syndrome and is located centromeric to the proximal 1p36 critical region. Here, we used clinical data from 34 individuals…

0301 basic medicineSHARPMaleobesitygenotype-phenotype correlationsAutism Spectrum DisorderPROTEINChromosome DisordersHaploinsufficiencyRNA-Binding ProteinPHENOTYPE CORRELATIONS1p36; distal 1p36 deletion syndrome; DNA methylome analysis; episignature; genotype-phenotype correlations; neurodevelopmental disorder; obesity; proximal 1p36 deletion syndrome; SPEN; X chromosome; Adolescent; Autism Spectrum Disorder; Child; Child Preschool; Chromosome Deletion; Chromosome Disorders; Chromosomes Human Pair 1; Chromosomes Human X; DNA Methylation; DNA-Binding Proteins; Epigenesis Genetic; Female; Haploinsufficiency; Humans; Intellectual Disability; Male; Neurodevelopmental Disorders; Phenotype; RNA-Binding Proteins; Young AdultEpigenesis GeneticX chromosome0302 clinical medicineNeurodevelopmental disorderNeurodevelopmental DisorderIntellectual disabilityMOLECULAR CHARACTERIZATIONdistal 1p36 deletion syndromeChildGenetics (clinical)X chromosomeGeneticsXDNA methylome analysiRNA-Binding ProteinsSPLIT-ENDSHypotoniaDNA-Binding ProteinsPhenotypeAutism spectrum disorderChromosomes Human Pair 1Child PreschoolDNA methylome analysisMONOSOMY 1P36Pair 1SPENFemalemedicine.symptomChromosome DeletionHaploinsufficiencyRare cancers Radboud Institute for Health Sciences [Radboudumc 9]HumanAdolescentDNA-Binding ProteinBiologygenotype-phenotype correlationChromosomes03 medical and health sciencesYoung AdultGeneticSDG 3 - Good Health and Well-beingReportIntellectual DisabilityREVEALSGeneticsmedicineHumansEpigeneticsPreschoolChromosomes Human XNeurodevelopmental disorders Donders Center for Medical Neuroscience [Radboudumc 7]1p361p36 deletion syndromeIDENTIFICATIONMUTATIONSproximal 1p36 deletion syndromeDNA Methylationmedicine.diseaseneurodevelopmental disorderGENEepisignature030104 developmental biologyChromosome DisorderNeurodevelopmental Disorders030217 neurology & neurosurgeryEpigenesis
researchProduct