0000000000435356

AUTHOR

Conny M. A. Van Ravenswaaij-arts

showing 4 related works from this author

Loss-of-function and missense variants in NSD2 cause decreased methylation activity and are associated with a distinct developmental phenotype

2021

Purpose Despite a few recent reports of patients harboring truncating variants in NSD2, a gene considered critical for the Wolf–Hirschhorn syndrome (WHS) phenotype, the clinical spectrum associated with NSD2 pathogenic variants remains poorly understood. Methods We collected a comprehensive series of 18 unpublished patients carrying heterozygous missense, elongating, or truncating NSD2 variants; compared their clinical data to the typical WHS phenotype after pooling them with ten previously described patients; and assessed the underlying molecular mechanism by structural modeling and measuring methylation activity in vitro. Results The core NSD2-associated phenotype includes mostly mild dev…

0301 basic medicineIn silicoBiologyArticleREGION03 medical and health sciencesROGERS-DANKS-SYNDROME0302 clinical medicineMissense mutationHISTONE H3GeneGenetics (clinical)Loss functionGeneticsNeurodevelopmental disorders Donders Center for Medical Neuroscience [Radboudumc 7]DELETIONDEFECTSMethylationPhenotypeLYSINE 36030104 developmental biologyMolecular mechanismWOLF-HIRSCHHORN-SYNDROME030217 neurology & neurosurgeryFunction (biology)Rare cancers Radboud Institute for Health Sciences [Radboudumc 9]Genetics in Medicine
researchProduct

EPHA7 haploinsufficiency is associated with a neurodevelopmental disorder

2021

International audience; Ephrin receptor and their ligands, the ephrins, are widely expressed in the developing brain. They are implicated in several developmental processes that are crucial for brain development. Deletions in genes encoding for members of the Eph/ephrin receptor family were reported in several neurodevelopmental disorders. The ephrin receptor A7 gene (EPHA7) encodes a member of ephrin receptor subfamily of the protein-tyrosine kinase family. EPHA7 plays a role in corticogenesis processes, determines brain size and shape, and is involved in development of the central nervous system. One patient only was reported so far with a de novo deletion encompassing EPHA7 in 6q16.1. We…

MaleMicrocephaly[SDV]Life Sciences [q-bio]6q161 microdeletionInheritance PatternsEPHA7HaploinsufficiencyBiologyspeech and language developmentNeurodevelopmental disorderExome SequencingGeneticsmedicineEphrinHumansGenetic Predisposition to DiseasemicrocephalyGenetics (clinical)Genetic Association StudiesIn Situ Hybridization FluorescenceGeneticsComparative Genomic Hybridization6q16.1 microdeletionErythropoietin-producing hepatocellular (Eph) receptorReceptor EphA7medicine.diseasePenetrancePhenotypeneurodevelopmental disorderPedigree[SDV] Life Sciences [q-bio]PhenotypeNeurodevelopmental Disordersintellectual disabilityEPHA7MutationChromosomes Human Pair 6FemaleHaploinsufficiencyClinical Genetics
researchProduct

Sema3a plays a role in the pathogenesis of CHARGE syndrome

2018

CHARGE syndrome is an autosomal dominant malformation disorder caused by heterozygous loss of function mutations in the chromatin remodeler CHD7. Chd7 regulates the expression of Sema3a, which also contributes to the pathogenesis of Kallmann syndrome, a heterogeneous condition with the typical features hypogonadotropic hypogonadism and an impaired sense of smell. Both features are common in CHARGE syndrome suggesting that SEMA3A may provide a genetic link between these syndromes. Indeed, we find evidence that SEMA3A plays a role in the pathogenesis of CHARGE syndrome. First, Chd7 is enriched at the Sema3a promotor in neural crest cells and loss of function of Chd7 inhibits Sema3a expression…

0301 basic medicineEmbryo NonmammalianKallmann syndromePHENOTYPIC SPECTRUMmedicine.disease_causeSeverity of Illness IndexEpigenesis GeneticPathogenesisAXON GUIDANCECHD7CHARGE syndromeXenopus laevis0302 clinical medicineHYPOGONADOTROPIC HYPOGONADISMPromoter Regions GeneticGenetics (clinical)GeneticsMutationGeneral MedicinePhenotypeDNA-Binding ProteinsNEURAL CREST CELLSNeural CrestHomeobox Protein Nkx-2.5MIGRATIONBiology03 medical and health sciencesHypogonadotropic hypogonadismKALLMANN-SYNDROMEGeneticsmedicineAnimalsHumansEpigeneticsSHORT STATUREMolecular BiologyLoss functionMUTATIONSGenetic Complementation TestDNA HelicasesSemaphorin-3AKallmann Syndromemedicine.diseaseDisease Models Animal030104 developmental biologyHEK293 CellsXENOPUS-EMBRYOSMutationCHARGE Syndrome030217 neurology & neurosurgery
researchProduct

DLG4-related synaptopathy: a new rare brain disorder

2021

Contains fulltext : 245031.pdf (Publisher’s version ) (Closed access) PURPOSE: Postsynaptic density protein-95 (PSD-95), encoded by DLG4, regulates excitatory synaptic function in the brain. Here we present the clinical and genetic features of 53 patients (42 previously unpublished) with DLG4 variants. METHODS: The clinical and genetic information were collected through GeneMatcher collaboration. All the individuals were investigated by local clinicians and the gene variants were identified by clinical exome/genome sequencing. RESULTS: The clinical picture was predominated by early onset global developmental delay, intellectual disability, autism spectrum disorder, and attention deficit-hyp…

0301 basic medicineAutism Spectrum Disorder[SDV]Life Sciences [q-bio]030105 genetics & heredityBiology03 medical and health sciencesIntellectual DisabilityIntellectual disabilitymedicineMissense mutationHumansGlobal developmental delayExomeGenetics (clinical)GeneticsBrain DiseasesNeurodevelopmental disorders Donders Center for Medical Neuroscience [Radboudumc 7]Brainmedicine.disease030104 developmental biologyPhenotypeRenal disorders Radboud Institute for Molecular Life Sciences [Radboudumc 11]Autism spectrum disorderNeurodevelopmental DisordersSynaptopathyDLG4Postsynaptic densityDisks Large Homolog 4 Protein
researchProduct