0000000000435405

AUTHOR

I. Trostmann

showing 7 related works from this author

Excitonic energy level structure and pigment-protein interactions in the recombinant water-soluble chlorophyll protein. II. Spectral hole-burning exp…

2011

Persistent spectral hole burning at 4.5 K has been used to investigate the excitonic energy level structure and the excited state dynamics of the recombinant class-IIa water-soluble chlorophyll-binding protein (WSCP) from cauliflower. The hole-burned spectra are composed of four main features: (i) a narrow zero-phonon hole (ZPH) at the burn wavelength, (ii) a number of vibrational ZPHs, (iii) a broad low-energy hole at ~665 and ~683 nm for chlorophyll b- and chlorophyll a-WSCP, respectively, and (iv) a second satellite hole at ~658 and ~673 nm for chlorophyll b- and chlorophyll a-WSCP, respectively. The doublet of broad satellite holes is assigned to an excitonically coupled chlorophyll dim…

ChlorophyllChlorophyll aExcitonAnalytical chemistryLight-Harvesting Protein ComplexesElectronsBrassicaVibrationSpectral linechemistry.chemical_compoundMaterials ChemistryPhysical and Theoretical ChemistryPhysics::Biological PhysicsChlorophyll AWaterFluorescenceRecombinant ProteinsSurfaces Coatings and FilmsWavelengthSpectrometry FluorescencechemistryExcited stateChlorophyllSpectral hole burningThermodynamicsAtomic physicsThe journal of physical chemistry. B
researchProduct

Pigment−Pigment and Pigment−Protein Interactions in Recombinant Water-Soluble Chlorophyll Proteins (WSCP) from Cauliflower

2007

Plants contain water-soluble chlorophyll-binding proteins (WSCPs) that function neither as antennas nor as components of light-induced electron transfer of photosynthesis but are likely constituents of regulatory protective pathways in particular under stress conditions. This study presents results on the spectroscopic properties of recombinant WSCP from cauliflower reconstituted with chlorophyll b (Chl b) alone or with mixtures of Chl a and Chl b. Two types of experiments were performed: (a) measurements of stationary absorption spectra at 77 and 298 K and CD spectra at 298 K and (b) monitoring of laser flash-induced transient absorption changes with a resolution of 200 fs in the time doma…

Chlorophyll bCircular dichroismAbsorption spectroscopyCircular DichroismLasersDimerKineticsLight-Harvesting Protein ComplexesBrassicaPigments BiologicalRecombinant ProteinsSurfaces Coatings and FilmsKineticschemistry.chemical_compoundCrystallographyElectron transferchemistryUltrafast laser spectroscopyChlorinMaterials ChemistryLinear Energy TransferSpectrophotometry UltravioletPhysical and Theoretical ChemistryThe Journal of Physical Chemistry B
researchProduct

Excitonic Energy Level Structure and Pigment−Protein Interactions in the Recombinant Water-Soluble Chlorophyll Protein. I. Difference Fluorescence Li…

2011

Difference fluorescence line-narrowing spectroscopy at 4.5 K was employed to investigate electron-phonon and electron-vibrational coupling strengths of the lower exciton level of water-soluble chlorophyll-binding protein (WSCP) from cauliflower reconstituted with chlorophyll a or chlorophyll b, respectively. The electron-phonon coupling is found to be moderate with integral Huang-Rhys factors S in the order of 0.81-0.85. A weak dependence of S on excitation wavelength within the inhomogeneously broadened fluorescence origin band is attributed to a sizable contribution of nonresonant excitation that varies with excitation wavelength. The strongly asymmetric and highly structured one-phonon p…

ChlorophyllChlorophyll bChlorophyll aChemistryPhononChlorophyll AExcitonLight-Harvesting Protein ComplexesAnalytical chemistryWaterElectronsBrassicaFluorescenceRecombinant ProteinsSurfaces Coatings and Filmschemistry.chemical_compoundSpectrometry FluorescenceChlorophyllMaterials ChemistryThermodynamicsPhysical and Theoretical ChemistrySpectroscopyExcitationThe Journal of Physical Chemistry B
researchProduct

Refinement of a structural model of a pigment-protein complex by accurate optical line shape theory and experiments.

2007

Time-local and time-nonlocal theories are used in combination with optical spectroscopy to characterize the water-soluble chlorophyll binding protein complex (WSCP) from cauliflower. The recombinant cauliflower WSCP complexes reconstituted with either chlorophyll b (Chl b) or Chl a/Chl b mixtures are characterized by absorption spectroscopy at 77 and 298 K and circular dichroism at 298 K. On the basis of the analysis of these spectra and spectra reported for recombinant WSCP reconstituted with Chl a only (Hughes, J. L.; Razeghifard, R.; Logue, M.; Oakley, A.; Wydrzynski, T.; Krausz, E. J. Am. Chem. Soc. U.S.A. 2006, 128, 3649), the "open-sandwich" model proposed for the structure of the pig…

Chlorophyll bChlorophyllModels MolecularCircular dichroismOptics and PhotonicsAbsorption spectroscopyChemistryDimerExcitonChlorophyll ACircular DichroismSpectrum AnalysisStatic ElectricityLight-Harvesting Protein ComplexesBrassicaSpectral lineSurfaces Coatings and Filmschemistry.chemical_compoundCrystallographyKineticsModels ChemicalMaterials ChemistryChlorophyll bindingPhysical and Theoretical ChemistrySpectroscopyThe journal of physical chemistry. B
researchProduct

Water soluble chlorophyll binding protein of higher plants: A most suitable model system for basic analyses of pigment–pigment and pigment–protein in…

2011

Abstract This short review paper describes spectroscopic studies on pigment–pigment and pigment–protein interactions of chlorophyll (Chl) a and b bound to the recombinant protein of class IIa water soluble chlorophyll protein (WSCP) from cauliflower. Two Chls form a strongly excitonically coupled open sandwich dimer within the tetrameric protein matrix. In marked contrast to the mode of excitonic coupling of Chl and bacterio-Chl molecules in light harvesting complexes and reaction centers of all photosynthetic organisms, the unique structural pigment array in the Chl dimer of WSCP gives rise to an upper excitonic state with a large oscillator strength. This property opens the way for thorou…

ChlorophyllPhysiologyTetrameric proteinDimerLight-Harvesting Protein ComplexesTemperatureWatermacromolecular substancesPlant SciencePlantsPhotochemistryPhotosynthesisModels BiologicalLight-harvesting complexchemistry.chemical_compoundPigmentchemistryChlorophyllvisual_artvisual_art.visual_art_mediumChlorophyll bindingMoleculeAgronomy and Crop ScienceJournal of Plant Physiology
researchProduct

Thermally Activated Superradiance and Intersystem Crossing in the Water-Soluble Chlorophyll Binding Protein

2009

The crystal structure of the class IIb water-soluble chlorophyll binding protein (WSCP) from Lepidium virginicum is used to model linear absorption and circular dichroism spectra as well as excited state decay times of class IIa WSCP from cauliflower reconstituted with chlorophyll (Chl) a and Chl b. The close agreement between theory and experiment suggests that both types of WSCP share a common Chl binding motif, where the opening angle between pigment planes in class IIa WSCP should not differ by more than 10 degrees from that in class IIb. The experimentally observed (Schmitt et al. J. Phys. Chem. B 2008, 112, 13951) decrease in excited state lifetime of Chl a homodimers with increasing …

Models MolecularCircular DichroismDimerExcitonStatic ElectricityLight-Harvesting Protein ComplexesTemperatureWaterCrystal structureCrystallography X-RayPhotochemistryLepidiumSurfaces Coatings and Filmschemistry.chemical_compoundCrystallographyIntersystem crossingSolubilitychemistryChlorophyllExcited stateMaterials ChemistryChlorophyll bindingQuantum TheoryPhysical and Theoretical ChemistryAbsorption (chemistry)The Journal of Physical Chemistry B
researchProduct

Excited State Dynamics in Recombinant Water-Soluble Chlorophyll Proteins (WSCP) from Cauliflower Investigated by Transient Fluorescence Spectroscopy

2008

The present study describes the fluorescence emission properties of recombinant water-soluble chlorophyll (Chl) protein (WSCP) complexes reconstituted with either Chl a or Chl b alone (Chl a only or Chl b only WSCP, respectively) or mixtures of both pigments at different stoichiometrical ratios. Detailed investigations were performed with time and space correlated ps fluorescence spectroscopy within the temperature range from 10 to 295 K. The following points were found: (a) The emission spectra at room temperature (295 K) are well characterized by bands with a dominating Lorentzian profile broadened due to phonon scattering and peak positions located at 677, 684 and 693 nm in the case of C…

Time FactorsLight-Harvesting Protein ComplexesTemperatureAnalytical chemistryWaterBrassicaAtmospheric temperature rangeFluorescenceRecombinant ProteinsSpectral lineFluorescence spectroscopySurfaces Coatings and FilmsPigmentchemistry.chemical_compoundSpectrometry FluorescenceSolubilitychemistryvisual_artExcited stateChlorophyllMaterials Chemistryvisual_art.visual_art_mediumEmission spectrumPhysical and Theoretical ChemistryPlant ProteinsThe Journal of Physical Chemistry B
researchProduct