0000000000435918

AUTHOR

Vladimir I. Zadorozhny

showing 1 related works from this author

A Relational Tsetlin Machine with Applications to Natural Language Understanding

2021

TMs are a pattern recognition approach that uses finite state machines for learning and propositional logic to represent patterns. In addition to being natively interpretable, they have provided competitive accuracy for various tasks. In this paper, we increase the computing power of TMs by proposing a first-order logic-based framework with Herbrand semantics. The resulting TM is relational and can take advantage of logical structures appearing in natural language, to learn rules that represent how actions and consequences are related in the real world. The outcome is a logic program of Horn clauses, bringing in a structured view of unstructured data. In closed-domain question-answering, th…

FOS: Computer and information sciencesComputer Science - Machine LearningComputer Science - Logic in Computer ScienceComputer Science - Computation and LanguageI.2.4Computer Science - Artificial IntelligenceComputer Networks and CommunicationsI.2.7Machine Learning (cs.LG)Logic in Computer Science (cs.LO)Artificial Intelligence (cs.AI)Artificial IntelligenceHardware and ArchitectureComputation and Language (cs.CL)I.2.7; I.2.4SoftwareInformation Systems
researchProduct