0000000000436041

AUTHOR

Tommi Alanne

0000-0002-3806-7652

Strong phase transition, dark matter and vacuum stability from simple hidden sectors

Motivated by the possibility to explain dark matter abundance and strong electroweak phase transition, we consider simple extensions of the Standard Model containing singlet fields coupled with the Standard Model via a scalar portal. Concretely, we consider a basic portal model consisting of a singlet scalar with $Z_2$ symmetry and a model containing a singlet fermion connected with the Standard Model fields via a singlet scalar portal. We perform a Monte Carlo analysis of the parameter space of each model, and we find that in both cases the dark matter abundance can be produced either via freeze-out or freeze-in mechanisms, but only in the latter model one can obtain also a strong electrow…

research product

Elementary Goldstone Higgs boson and dark matter

We investigate a perturbative extension of the Standard Model featuring elementary pseudo-Goldstone Higgs and dark matter particles. These are two of the five Goldstone bosons parametrising the SU(4)/Sp(4) coset space. They acquire masses, and therefore become pseudo-Goldstone bosons, due to the embedding of the Yukawa and the electroweak gauge interactions that do not preserve the full SU(4) symmetry. At the one-loop order the top corrections dominate and align the vacuum in the direction where the Higgs is mostly a pseudo-Goldstone boson. Because of the perturbative and elementary nature of the theory, the quantum corrections are precisely calculable. The remaining pseudo-Goldstone boson …

research product

Supersymmetric technicolor

In this thesis, we consider a supersymmetrized version of the Standard Model extended with a technicolor sector. We specialize in the regime of the model in which the technicolor sector is fully responsible of the electroweak symmetry breaking and the natural elementary Higgses of the supersymmetric model only transmit the breaking to the Standard Model fermions, thereby giving them masses. In particular, we consider the vacuum structure of the effective theory, find it to be different to that of a mere technicolor model and study the contributions of the new sector to the oblique electroweak parameters. Relative to the current experimental limits, we find the model viable.

research product

Baryogenesis in the two doublet and inert singlet extension of the Standard Model

We investigate an extension of the Standard Model containing two Higgs doublets and a singlet scalar field (2HDSM). We show that the model can have a strongly first-order phase transition and give rise to the observed baryon asymmetry of the Universe, consistent with all experimental constraints. In particular, the constraints from the electron and neutron electric dipole moments are less constraining here than in pure two-Higgs-doublet model (2HDM). The two-step, first-order transition in 2HDSM, induced by the singlet field, may lead to strong supercooling and low nucleation temperatures in comparison with the critical temperature, $T_n \ll T_c$, which can significantly alter the usual pha…

research product

Beyond the standard model via extended symmetries and dark matter

In this thesis, we discuss ideas of how to go beyond the Standard Model (SM) of particle physics to incorporate the cosmological observations of dark matter and matter–antimatter asymmetry, and to address the theoretical problems related to the scalar sector of the SM. Although the SM has proven to be an excellent description of the interactions of elementary particles, there is both experimental and theoretical evidence that this description cannot be complete. Most notably, the cosmological observations of dark matter (DM) and the matter–antimatter asymmetry in the universe cannot be explained within the SM. We have studied simple singlet extensions of the SM. We found out that these DM a…

research product