0000000000437274

AUTHOR

Chenghui Zhang

Oscillation of fourth-order quasilinear differential equations

We study oscillatory behavior of a class of fourth-order quasilinear differential equations without imposing restrictive conditions on the deviated argument. This allows applications to functional differential equations with delayed and advanced arguments, and not only these. New theorems are based on a thorough analysis of possible behavior of nonoscillatory solutions; they complement and improve a number of results reported in the literature. Three illustrative examples are presented.

research product

Oscillation of Second-Order Neutral Differential Equations

Author's version of an article in the journal: Funkcialaj Ekvacioj. Also available from the publisher at: http://www.math.kobe-u.ac.jp/~fe/ We study oscillatory behavior of a class of second-order neutral differential equations relating oscillation of these equations to existence of positive solutions to associated first-order functional differential inequalities. Our assumptions allow applications to differential equations with both delayed and advanced arguments, and not only. New theorems complement and improve a number of results reported in the literature. Two illustrative examples are provided.

research product

Oscillation results for second-order nonlinear neutral differential equations

Published version of an article in the journal: Advances in Difference Equations. Also available from the publisher at: http://dx.doi.org/10.1186/1687-1847-2013-336 Open Access We obtain several oscillation criteria for a class of second-order nonlinear neutral differential equations. New theorems extend a number of related results reported in the literature and can be used in cases where known theorems fail to apply. Two illustrative examples are provided.

research product