A Perturbative Approach to Continuous-Time Quantum Error Correction
We present a novel discussion of the continuous-time quantum error correction introduced by Paz and Zurek in 1998 [Paz and Zurek, Proc. R. Soc. A 454, 355 (1998)]. We study the general Lindbladian which describes the effects of both noise and error correction in the weak-noise (or strong-correction) regime through a perturbative expansion. We use this tool to derive quantitative aspects of the continuous-time dynamics both in general and through two illustrative examples: the 3-qubit and the 5-qubit stabilizer codes, which can be independently solved by analytical and numerical methods and then used as benchmarks for the perturbative approach. The perturbatively accessible time frame featur…
Quantum memories with zero-energy Majorana modes and experimental constraints
In this work we address the problem of realizing a reliable quantum memory based on zero-energy Majorana modes in the presence of experimental constraints on the operations aimed at recovering the information. In particular, we characterize the best recovery operation acting only on the zero-energy Majorana modes and the memory fidelity that can be therewith achieved. In order to understand the effect of such restriction, we discuss two examples of noise models acting on the topological system and compare the amount of information that can be recovered by accessing either the whole system, or the zero-modes only, with particular attention to the scaling with the size of the system and the e…