Defect incorporation in In-containing layers and quantum wells: Experimental analysis via deep level profiling and optical spectroscopy
Abstract Recent studies demonstrated that the performance of InGaN/GaN quantum well (QW) light emitting diodes (LEDs) can be significantly improved through the insertion of an InGaN underlayer (UL). The current working hypothesis is that the presence of the UL reduces the density of non-radiative recombination centers (NRCs) in the QW itself: during the growth of the UL, surface defects are effectively buried in the UL, without propagating towards the QW region. Despite the importance of this hypothesis, the concentration profile of defects in the quantum wells of LEDs with and without the UL was never investigated in detail. This paper uses combined capacitance-voltage and steady-state pho…