0000000000437577
AUTHOR
M. P. Francino
Meconium microbiota types dominated by lactic acid or enteric bacteria are differentially associated with maternal eczema and respiratory problems in infants
Background Culture-dependent methods have shown that meconium, the newborn's first intestinal discharge, is not sterile, but the diversity of bacteria present in this material needs to be further characterized by means of more sensitive molecular techniques. Objective Our aims were to characterize molecularly the meconium microbiota in term infants, to assess whether it contributes to the future microbiota of the infants' gastrointestinal tract, and to evaluate how it relates to lifestyle variables and atopy-related conditions. Methods We applied high-throughput pyrosequencing of the 16S rRNA gene to study the meconium microbiota in twenty term newborns from a Spanish birth cohort. For comp…
High frequencies of antibiotic resistance genes in infants' meconium and early fecal samples
The gastrointestinal tract (GIT) microbiota has been identified as an important reservoir of antibiotic resistance genes (ARGs) that can be horizontally transferred to pathogenic species. Maternal GIT microbes can be transmitted to the offspring, and recent work indicates that such transfer starts before birth. We have used culture-independent genetic screenings to explore whether ARGs are already present in the meconium accumulated in the GIT during fetal life and in feces of 1-week-old infants. We have analyzed resistance to β-lactam antibiotics (BLr) and tetracycline (Tcr), screening for a variety of genes conferring each. To evaluate whether ARGs could have been inherited by maternal tr…
Antibiotics and the Human Gut Microbiome: Dysbioses and Accumulation of Resistances
The human microbiome is overly exposed to antibiotics, due, not only to their medical use, but also to their utilization in farm animals and crops. Microbiome composition can be rapidly altered by exposure to antibiotics, with potential immediate effects on health, for instance through the selection of resistant opportunistic pathogens that can cause acute disease. Microbiome alterations induced by antibiotics can also indirectly affect health in the long-term. The mutualistic microbes in the human body interact with many physiological processes, and participate in the regulation of immune and metabolic homeostasis. Therefore, antibiotic exposure can alter many basic physiological equilibri…