0000000000437602

AUTHOR

Gemma Newby

showing 3 related works from this author

Structural photoactivation of a full-length bacterial phytochrome

2016

Time-resolved x-ray solution scattering reveals the conformational signaling mechanism of a bacterial phytochrome.

Models Molecular0301 basic medicineProtein ConformationAstrophysics::High Energy Astrophysical Phenomena116 Chemical sciencesPhotoreceptors MicrobialphytochromesQuantitative Biology::Cell BehaviorStructure-Activity Relationship03 medical and health sciencesProtein structureBacterial ProteinsStructural BiologyDeinococcus radioduransBotanyResearch Articles219 Environmental biotechnologyMultidisciplinarybiologyPhytochromeHistidine kinaseta1182SciAdv r-articlesDeinococcus radioduransChromophorebiology.organism_classificationKineticsMicrosecond030104 developmental biologyStructural changephotoactivationBiophysicsPhytochromeFunction (biology)Research Article
researchProduct

Light-induced structural changes in a monomeric bacteriophytochrome

2016

International audience; Phytochromes sense red light in plants and various microorganism. Light absorption causes structural changes within the protein, which alter its biochemical activity. Bacterial phytochromes are dimeric proteins, but the functional relevance of this arrangement remains unclear. Here, we use time-resolved X-ray scattering to reveal the solution structural change of a monomeric variant of the photosensory core module of the phytochrome from Deinococcus radiodurans. The data reveal two motions, a bend and a twist of the PHY domain with respect to the chromophore-binding domains. Infrared spectroscopy shows the refolding of the PHY tongue. We conclude that a monomer of th…

0301 basic medicineAllosteric regulationInfrared spectroscopyBiological Systems010402 general chemistry01 natural sciencesARTICLES03 medical and health scienceschemistry.chemical_compoundSDG 17 - Partnerships for the Goalslcsh:QD901-999[CHIM]Chemical SciencesInstrumentationSpectroscopyRadiationPhytochromebiologyChemistryMolecular biophysicsta1182/dk/atira/pure/sustainabledevelopmentgoals/partnershipsDeinococcus radioduransBiochemical ActivityCondensed Matter Physicsbiology.organism_classification0104 chemical sciences030104 developmental biologyMonomerStructural changebacterial phytochromesBiophysicslcsh:CrystallographyStructural Dynamics
researchProduct

Sequential conformational transitions and α-helical supercoiling regulate a sensor histidine kinase

2017

Sensor histidine kinases are central to sensing in bacteria and in plants. They usually contain sensor, linker, and kinase modules and the structure of many of these components is known. However, it is unclear how the kinase module is structurally regulated. Here, we use nano- to millisecond time-resolved X-ray scattering to visualize the solution structural changes that occur when the light-sensitive model histidine kinase YF1 is activated by blue light. We find that the coiled coil linker and the attached histidine kinase domains undergo a left handed rotation within microseconds. In a much slower second step, the kinase domains rearrange internally. This structural mechanism presents a t…

Models MolecularkinaasitentsyymitHistidine KinaseLightProtein ConformationScienceQCrystallography X-RayArticleProtein Structure SecondaryaktivointiBacterial ProteinsProtein DomainsX-Ray DiffractionphotoactivationScattering Small AngleNanotechnologysensor histidine kinasesNature Communications
researchProduct