0000000000441089

AUTHOR

Carlos Carpintero

showing 2 related works from this author

Some characterizations of operators satisfying a-Browder's theorem

2005

Abstract We characterize the bounded linear operators T defined on Banach spaces satisfying a-Browder's theorem, or a-Weyl's theorem, by means of the discontinuity of some maps defined on certain subsets of C . Several other characterizations are given in terms of localized SVEP, as well as by means of the quasi-nilpotent part, the hyper-kernel or the analytic core of λ I − T .

Discrete mathematicsUnbounded operatora-Browder's theoremFredholm theoryPicard–Lindelöf theoremApplied MathematicsEberlein–Šmulian theoremBanach spaceSpectral theoremOperator theorya-Weyl's theoremShift theoremLocal spectral theoryBounded inverse theoremAnalysisMathematicsJournal of Mathematical Analysis and Applications
researchProduct

On Drazin invertibility

2008

The left Drazin spectrum and the Drazin spectrum coincide with the upper semi-B-Browder spectrum and the B-Browder spectrum, respectively. We also prove that some spectra coincide whenever T or T* satisfies the single-valued extension property.

Mathematics::Functional AnalysisPure mathematicsProperty (philosophy)Applied MathematicsGeneral MathematicsMathematics::Rings and AlgebrasSpectrum (functional analysis)Extension (predicate logic)Mathematics::Geometric TopologyMathematics::Algebraic TopologySpectral lineAlgebraDrazin invertible operatorsMathematicsProceedings of the American Mathematical Society
researchProduct