0000000000441424

AUTHOR

Stefaan Poedts

0000-0002-1743-0651

showing 5 related works from this author

Effect of gravitational stratification on the propagation of a CME

2013

Our aim is to study the role of gravitational stratification on the propagation of CMEs. In particular, we assess how it influences the speed and shape of CMEs and under what conditions the flux rope ejection becomes a CME or when it is quenched. We ran a set of MHD simulations that adopt an eruptive initial magnetic configuration that has already been shown to be suitable for a flux rope ejection. We varied the temperature of the backgroud corona and the intensity of the initial magnetic field to tune the gravitational stratification and the amount of ejected magnetic flux. We used an automatic technique to track the expansion and the propagation of the magnetic flux rope in the MHD simula…

Magnetohydrodynamics (MHD)010504 meteorology & atmospheric sciencescorona [Sun]Sun: coronal mass ejections (CMEs)Stratification (water)FOS: Physical sciencesAstrophysics01 natural sciencesmagnetohydrodynamics (MHD)Physics - Space Physics0103 physical sciencesGravitational stratificationCoronal mass ejectionQB AstronomyAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsFlux rope ejectionSolar and Stellar Astrophysics (astro-ph.SR)QB0105 earth and related environmental sciencesPhysicsCoronal mass ejections (CMEs)Sun: coronaAstronomy and AstrophysicsPlasmaCoronaMagnetic fluxSpace Physics (physics.space-ph)coronal mass ejections (CMEs) [Sun]Magnetic fieldAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary SciencePhysics::Space PhysicsMagnetohydrodynamicsRope
researchProduct

Magnetohydrodynamic study on the effect of the gravity stratification on flux rope ejections

2013

Context. Coronal mass ejections (CMEs) are the most violent phenomenon found on the Sun. One model that explains their occurrence is the flux rope ejection model. A magnetic flux rope is ejected from the solar corona and reaches the interplanetary space where it interacts with the pre-existing magnetic fields and plasma. Both gravity and the stratification of the corona affect the early evolution of the flux rope. Aims. Our aim is to study the role of gravitational stratification on the propagation of CMEs. In particular, we assess how it influences the speed and shape of CMEs and under what conditions the flux rope ejection becomes a CME or when it is quenched. Methods. We ran a set of MHD…

Sun: coronal mass ejections (CMEs) – Sun: corona – magnetohydrodynamics (MHD)PhysicsSpace and Planetary SciencePhysics::Space PhysicsAstrophysics::Solar and Stellar AstrophysicsStratification (water)Astronomy and AstrophysicsAstrophysics::Earth and Planetary AstrophysicsMagnetohydrodynamic driveMechanicsMagnetohydrodynamicsSettore FIS/06 - Fisica Per Il Sistema Terra E Il Mezzo CircumterrestreRopeProceedings of the International Astronomical Union
researchProduct

Simulating AIA observations of a flux rope ejection

2014

D.H.M. would like to thank STFC, the Leverhulme Trust and the European Commission’s Seventh Framework Programme (FP7/2007-2013) for their financial support. P.P. would like to thank the European Commission’s Seventh Framework Programme (FP7/2007-2013) under grant agreement SWIFF (project 263340, http://www.swiff.eu) and STFC for financial support. These results were obtained in the framework of the projects GOA/2009-009 (KU Leuven), G.0729.11 (FWO-Vlaanderen) and C 90347 (ESA Prodex 9). The research leading to these results has also received funding from the European Commission’s Seventh Framework Programme (FP7/2007-2013) under the grant agreements SOLSPANET (project No. 269299, http:// ww…

Magnetohydrodynamics (MHD)corona [Sun]Sun: coronal mass ejections (CMEs)FOS: Physical sciencesAstrophysicsmagnetohydrodynamics (MHD)7. Clean energyProminencesObservatoryRadiative transferQB AstronomyAstrophysics::Solar and Stellar AstrophysicsQA MathematicsQASun: magnetic fieldsSolar and Stellar Astrophysics (astro-ph.SR)QBPhysicsUV radiation [Sun]Line-of-sightSun: coronaAstronomy and AstrophysicsPlasmaSun: UV radiationCoronacoronal mass ejections (CMEs) [Sun]Magnetic fluxSun: filamentsAstrophysics - Solar and Stellar Astrophysicsmagnetic fields [Sun]13. Climate actionSpace and Planetary ScienceExtreme ultravioletPhysics::Space Physicsfilaments prominences [Sun]Rope
researchProduct

Numerical Simulations of a Flux Rope Ejection

2015

Coronal mass ejections (CMEs) are the most violent phenomena observed on the Sun. One of the most successful models to explain CMEs is the flux rope ejection model, where a magnetic flux rope is expelled from the solar corona after a long phase along which the flux rope stays in equilibrium while magnetic energy is being accumulated. However, still many questions are outstanding on the detailed mechanism of the ejection and observations continuously provide new data to interpret and put in the context. Currently, extreme ultraviolet (EUV) images from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamic Observatory (SDO) are providing new insights into the early phase of CME evo…

SimulationsPhysicsNDASAstronomy and AstrophysicsCoronal loopAstrophysicsCoronaMagnetic fluxNanoflaresMagnetohydrodynamicsQC PhysicsCoronal mass ejections—magnetohydrodynamics—simulations—coronaSpace and Planetary ScienceMagnetic helicityPhysics::Space PhysicsCoronal mass ejectionsCoronal mass ejectionCoronaAstrophysics::Solar and Stellar AstrophysicsMagnetic cloudQCRopeJournal of Astrophysics and Astronomy
researchProduct

Magnetohydrodynamic simulations of the ejection of a magnetic flux rope

2013

Context. Coronal mass ejections (CME's) are one of the most violent phenomena found on the Sun. One model to explain their occurrence is the flux rope ejection model. In this model, magnetic flux ropes form slowly over time periods of days to weeks. They then lose equilibrium and are ejected from the solar corona over a few hours. The contrasting time scales of formation and ejection pose a serious problem for numerical simulations. Aims: We simulate the whole life span of a flux rope from slow formation to rapid ejection and investigate whether magnetic flux ropes formed from a continuous magnetic field distribution, during a quasi-static evolution, can erupt to produce a CME. Methods: To …

Q ScienceMagnetohydrodynamics (MHD)coronal mass ejections [Sun]010504 meteorology & atmospheric sciencescorona [Sun]FluxAstrophysicsmagnetic fields01 natural sciencesmagnetohydrodynamics (MHD)0103 physical sciencesCoronal mass ejectionAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysics0105 earth and related environmental sciencesPhysicsSun: coronal mass ejectionsSun: coronaQSunAstronomy and AstrophysicsCoronal loopCoronaMagnetic fluxNanoflares13. Climate actionSpace and Planetary ScienceMagnetic fieldsPhysics::Space PhysicsCoronal mass ejectionsCoronaMagnetohydrodynamicsRope
researchProduct