0000000000441453

AUTHOR

Vasileios Paschalidis

0000-0002-8099-9023

Are fast radio bursts the most likely electromagnetic counterpart of neutron star mergers resulting in prompt collapse?

Inspiraling and merging binary neutron stars (BNSs) are important sources of both gravitational waves and coincident electromagnetic counterparts. If the BNS total mass is larger than a threshold value, a black hole ensues promptly after merger. Through a statistical study in conjunction with recent LIGO/Virgo constraints on the nuclear equation of state, we estimate that up to $\sim 25\%$ of BNS mergers may result in prompt collapse. Moreover, we find that most models of the BNS mass function we study here predict that the majority of prompt-collapse BNS mergers have $q\gtrsim 0.8$. Prompt-collapse BNS mergers with mass ratio $q \gtrsim 0.8$ may not be accompanied by detectable kilonovae o…

research product

Relativistic simulations of black hole-neutron star coalescence: the jet emerges

We perform magnetohydrodynamic simulations in full general relativity (GRMHD) of a binary black hole-neutron star on a quasicircular orbit that undergoes merger. The binary mass ratio is 3:1, the black hole initial spin parameter $a/m=0.75$ ($m$ is the black hole Christodoulou mass) aligned with the orbital angular momentum, and the neutron star is an irrotational $\Gamma=2$ polytrope. About two orbits prior to merger (at time $t=t_B$), we seed the neutron star with a dynamically weak interior dipole magnetic field that extends into the stellar exterior. At $t=t_B$ the exterior has a low-density atmosphere with constant plasma parameter $\beta\equiv P_{\rm gas}/P_{\rm mag}$. Varying $\beta$…

research product

Self-gravitating disks around rapidly spinning, tilted black holes: General relativistic simulations

We perform general relativistic simulations of self-gravitating black hole-disks in which the spin of the black hole is significantly tilted ($45^\circ$ and $90^\circ$) with respect to the angular momentum of the disk and the disk-to-black hole mass ratio is $16\%-28\%$. The black holes are rapidly spinning with dimensionless spins up to $\sim 0.97$. These are the first self-consistent hydrodynamic simulations of such systems, which can be prime sources for multimessenger astronomy. In particular tilted black hole-disk systems lead to: i) black hole precession; ii) disk precession and warping around the black hole; iii) earlier saturation of the Papaloizou-Pringle instability compared to al…

research product

New horizons for fundamental physics with LISA

K. G. Arun et al.

research product

Gravitational Waves from Disks Around Spinning Black Holes: Simulations in Full General Relativity

We present fully general-relativistic numerical evolutions of self-gravitating tori around spinning black holes with dimensionless spin $a/M = 0.7$ parallel or anti-parallel to the disk angular momentum. The initial disks are unstable to the hydrodynamic Papaloizou-Pringle Instability which causes them to grow persistent orbiting matter clumps. The effect of black hole spin on the growth and saturation of the instability is assessed. We find that the instability behaves similarly to prior simulations with non-spinning black holes, with a shift in frequency due to spin-induced changes in disk orbital period. Copious gravitational waves are generated by these systems, and we analyze their det…

research product

Accretion disks around binary black holes of unequal mass: General relativistic MHD simulations of postdecoupling and merger

We report results from simulations in general relativity of magnetized disks accreting onto merging black hole binaries, starting from relaxed disk initial data. The simulations feature an effective, rapid radiative cooling scheme as a limiting case of future treatments with radiative transfer. Here we evolve the systems after binary-disk decoupling through inspiral and merger, and analyze the dependence on the binary mass ratio with $q\ensuremath{\equiv}{m}_{\text{bh}}/{M}_{\mathrm{BH}}=1,1/2$, and $1/4$. We find that the luminosity associated with local cooling is larger than the luminosity associated with matter kinetic outflows, while the electromagnetic (Poynting) luminosity associated…

research product

Disks Around Merging Binary Black Holes: From GW150914 to Supermassive Black Holes

We perform magnetohydrodynamic simulations in full general relativity of disk accretion onto nonspinning black hole binaries with mass ratio 36:29. We survey different disk models which differ in their scale height, total size and magnetic field to quantify the robustness of previous simulations on the initial disk model. Scaling our simulations to LIGO GW150914 we find that such systems could explain possible gravitational wave and electromagnetic counterparts such as the Fermi GBM hard X-ray signal reported 0.4s after GW150915 ended. Scaling our simulations to supermassive binary black holes, we find that observable flow properties such as accretion rate periodicities, the emergence of je…

research product

Magnetorotational Collapse of Supermassive Stars: Black Hole Formation, Gravitational Waves and Jets

We perform MHD simulations in full GR of uniformly rotating stars that are marginally unstable to collapse. Our simulations model the direct collapse of supermassive stars (SMSs) to seed black holes (BHs) that can grow to become the supermassive BHs at the centers of quasars and AGNs. They also crudely model the collapse of massive Pop III stars to BHs, which could power a fraction of distant, long gamma-ray bursts (GRBs). The initial stellar models we adopt are $\Gamma = 4/3$ polytropes seeded with a dynamically unimportant dipole magnetic field (B field). We treat initial B-field configurations either confined to the stellar interior or extending out from the interior into the stellar ext…

research product

Pulsar spin-down luminosity: Simulations in general relativity

Adopting our new method for matching general relativistic, ideal magnetohydrodynamics to its force-free limit, we perform the first systematic simulations of force-free pulsar magnetospheres in general relativity. We endow the neutron star with a general relativistic dipole magnetic field, model the interior with ideal magnetohydrodynamics, and adopt force-free electrodynamics in the exterior. Comparing the spin-down luminosity to its corresponding Minkowski value, we find that general relativistic effects give rise to a modest enhancement: the maximum enhancement for $n=1$ polytropes is $\sim 23\%$. Evolving a rapidly rotating $n=0.5$ polytrope we find an even greater enhancement of $\sim …

research product

Minidisk dynamics in accreting, spinning black hole binaries: Simulations in full general relativity

We perform magnetohydrodynamic simulations of accreting, equal-mass binary black holes in full general relativity focusing on the impact of black hole spin on the dynamical formation and evolution of minidisks. We find that during the late inspiral the sizes of minidisks are primarily determined by the interplay between the tidal field and the effective innermost stable orbit around each black hole. Our calculations support that a minidisk forms when the Hill sphere around each black hole is significantly larger than the black hole's effective innermost stable orbit. As the binary inspirals, the radius of the Hill sphere decreases, and minidisk sconsequently shrink in size. As a result, ele…

research product

Effect of spin on the inspiral of binary neutron stars

We perform long-term simulations of spinning binary neutron stars, with our highest dimensionless spin being $\chi \sim 0.32$. To assess the importance of spin during the inspiral we vary the spin, and also use two equations of state, one that consists of plain nuclear matter and produces compact stars (SLy), and a hybrid one that contains both nuclear and quark matter and leads to larger stars (ALF2). Using high resolution that has grid spacing $\Delta x\sim 98$ m on the finest refinement level, we find that the effects of spin in the phase evolution of a binary system can be larger than the one that comes from tidal forces. Our calculations demonstrate explicitly that although tidal effec…

research product

Binary neutron star mergers: a jet engine for short gamma-ray bursts

We perform magnetohydrodynamic simulations in full general relativity (GRMHD) of quasi-circular, equal-mass, binary neutron stars that undergo merger. The initial stars are irrotational, $n=1$ polytropes and are magnetized. We explore two types of magnetic-field geometries: one where each star is endowed with a dipole magnetic field extending from the interior into the exterior, as in a pulsar, and the other where the dipole field is initially confined to the interior. In both cases the adopted magnetic fields are initially dynamically unimportant. The merger outcome is a hypermassive neutron star that undergoes delayed collapse to a black hole (spin parameter $a/M_{\rm BH} \sim 0.74$) imme…

research product

Black hole-neutron star coalescence: effects of the neutron star spin on jet launching and dynamical ejecta mass

Black hole-neutron star (BHNS) mergers are thought to be sources of gravitational waves (GWs) with coincident electromagnetic (EM) counterparts. To further probe whether these systems are viable progenitors of short gamma-ray bursts (sGRBs) and kilonovae, and how one may use (the lack of) EM counterparts associated with LIGO/Virgo candidate BHNS GW events to sharpen parameter estimation, we study the impact of neutron star spin in BHNS mergers. Using dynamical spacetime magnetohydrodynamic simulations of BHNSs initially on a quasicircular orbit, we survey configurations that differ in the BH spin ($a_{\rm BH}/M_{\rm BH}=0$ and $0.75$), the NS spin ($a_{\rm NS}/M_{\rm NS}=-0.17,\,0,\,0.23$ a…

research product

Gravitational wave content and stability of uniformly, rotating, triaxial neutron stars in general relativity

Targets for ground-based gravitational wave interferometers include continuous, quasiperiodic sources of gravitational radiation, such as isolated, spinning neutron stars. In this work we perform evolution simulations of uniformly rotating, triaxially deformed stars, the compressible analogues in general relativity of incompressible, Newtonian Jacobi ellipsoids. We investigate their stability and gravitational wave emission. We employ five models, both normal and supramassive, and track their evolution with different grid setups and resolutions, as well as with two different evolution codes. We find that all models are dynamically stable and produce a strain that is approximately one-tenth …

research product

Effects of spin on magnetized binary neutron star mergers and jet launching

Events GW170817 and GRB 170817A provide the best confirmation so far that compact binary mergers where at least one of the companions is a neutron star (NS) can be the progenitors of short gamma-ray bursts (sGRBs). An open question for GW170817 remains the values and impact of the initial NS spins. The initial spins could possibly affect the remnant black hole (BH) mass and spin, the remnant disk and the formation and lifetime of a jet and its luminosity. Here we summarize our general relativistic magnetohydrodynamic simulations of spinning, NS binaries undergoing merger and delayed collapse to a BH. The binaries consist of two identical NSs, modeled as $\Gamma=2$ polytropes, in quasicircul…

research product