0000000000441616
AUTHOR
K. Franke
A reservoir trap for antiprotons
We have developed techniques to extract arbitrary fractions of antiprotons from an accumulated reservoir, and to inject them into a Penning-trap system for high-precision measurements. In our trap-system antiproton storage times > 1.08 years are estimated. The device is fail-safe against power-cuts of up to 10 hours. This makes our planned comparisons of the fundamental properties of protons and antiprotons independent from accelerator cycles, and will enable us to perform experiments during long accelerator shutdown periods when background magnetic noise is low. The demonstrated scheme has the potential to be applied in many other precision Penning trap experiments dealing with exotic p…
Resolution of Single Spin Flips of a Single Proton
The spin magnetic moment of a single proton in a cryogenic Penning trap was coupled to the particle's axial motion with a superimposed magnetic bottle. Jumps in the oscillation frequency indicate spin-flips and were identified using a Bayesian analysis.
High-precision comparison of the antiproton-to-proton charge-to-mass ratio
Invariance under the charge, parity, time-reversal (CPT) transformation$^{1}$ is one of the fundamental symmetries of the standard model of particle physics. This CPT invariance implies that the fundamental properties of antiparticles and their matter-conjugates are identical, apart from signs. There is a deep link between CPT invariance and Lorentz symmetry—that is, the laws of nature seem to be invariant under the symmetry transformation of spacetime—although it is model dependent$^{2}$. A number of high-precision CPT and Lorentz invariance tests—using a co-magnetometer, a torsion pendulum and a maser, among others—have been performed$^{3}$, but only a few direct high-precision CPT tests …
Direct high-precision measurement of the magnetic moment of the proton
The spin-magnetic moment of the proton $\mu_p$ is a fundamental property of this particle. So far $\mu_p$ has only been measured indirectly, analysing the spectrum of an atomic hydrogen maser in a magnetic field. Here, we report the direct high-precision measurement of the magnetic moment of a single proton using the double Penning-trap technique. We drive proton-spin quantum jumps by a magnetic radio-frequency field in a Penning trap with a homogeneous magnetic field. The induced spin-transitions are detected in a second trap with a strong superimposed magnetic inhomogeneity. This enables the measurement of the spin-flip probability as a function of the drive frequency. In each measurement…
Demonstration of the double Penning Trap technique with a single proton
Spin flips of a single proton were driven in a Penning trap with a homogeneous magnetic field. For the spin-state analysis the proton was transported into a second Penning trap with a superimposed magnetic bottle, and the continuous Stern-Gerlach effect was applied. This first demonstration of the double Penning trap technique with a single proton suggests that the antiproton magnetic moment measurement can potentially be improved by three orders of magnitude or more. Spin flips of a single proton were driven in a Penning trap with a homogeneous magnetic field. For the spin-state analysis the proton was transported into a second Penning trap with a superimposed magnetic bottle, and the cont…