0000000000441727

AUTHOR

Cristina Cervino

showing 3 related works from this author

CB(1) signaling in forebrain and sympathetic neurons is a key determinant of endocannabinoid actions on energy balance

2010

The endocannabinoid system (ECS) plays a critical role in obesity development. The pharmacological blockade of cannabinoid receptor type 1 (CB(1)) has been shown to reduce body weight and to alleviate obesity-related metabolic disorders. An unsolved question is at which anatomical level CB(1) modulates energy balance and the mechanisms involved in its action. Here, we demonstrate that CB(1) receptors expressed in forebrain and sympathetic neurons play a key role in the pathophysiological development of diet-induced obesity. Conditional mutant mice lacking CB(1) expression in neurons known to control energy balance, but not in nonneuronal peripheral organs, displayed a lean phenotype and res…

Sympathetic Nervous SystemPhysiologymedicine.medical_treatmentHUMDISEASEFluorescent Antibody TechniqueBody TemperatureMice0302 clinical medicineReceptor Cannabinoid CB1Cannabinoid receptor type 1ReceptorIn Situ HybridizationMice Knockout0303 health sciencesReverse Transcriptase Polymerase Chain ReactionCB(1)ThermogenesisEndocannabinoid systemOBESITYCB1 knock outlipids (amino acids peptides and proteins)CB(1); CANNABINOID RECEPTOR; OBESITY; ENDOCANNABINOID SYSTEM; METABOLIC DISORDERSSignal Transductionmedicine.medical_specialtyforebrainImmunoblottingCitrate (si)-SynthaseIn situ hybridizationHyperphagiaBiologyDNA MitochondrialModels BiologicalENDOCANNABINOID SYSTEMMOLNEURONO03 medical and health sciencesProsencephalonLipid oxidationInternal medicineMETABOLIC DISORDERSmedicineAnimalsMolecular BiologyCANNABINOID RECEPTOR030304 developmental biologyAnalysis of VarianceX-Ray MicrotomographyCell Biologyendocannabinoidenergy balanceEndocrinologynervous systemsympathetic neuronsForebrainCannabinoidEnergy Metabolismendocannabinoid; forebrain; sympathetic neurons; energy balance; CB1 knock outNeuroscienceThermogenesis030217 neurology & neurosurgery
researchProduct

How many sites of action for endocannabinoids to control energy metabolism?

2006

The promising results obtained by clinical trials using Rimonabant to tackle visceral obesity and related disorders recently promoted a remarkable impulse to carry out detailed investigations into the mechanisms of action of endocannabinoids in regulating food intake and energy metabolism. The endocannabinoid system has been known for many years to play an important role in the modulation of the neuronal pathways mediating the rewarding properties of food. However, in the last few years, with the advanced understanding of the crucial role of the hypothalamic neuronal network in the regulation of appetite, several studies have also directed attention to the orexigenic role of the endocannabi…

Leptinmedicine.medical_specialtyCannabinoid receptorEndocrinology Diabetes and Metabolismmedicine.medical_treatmentmedia_common.quotation_subjectHypothalamusEnergy metabolismMedicine (miscellaneous)BiologyCannabis sativaReceptor Cannabinoid CB1RimonabantOrexigenicInternal medicineCannabinoid Receptor ModulatorsmedicineAnimalsHumansmedia_commonNutrition and DieteticsAppetite Regulationmusculoskeletal neural and ocular physiologyFatty AcidsBrainAppetiteEndocannabinoid systemEndocrinologyAdipose TissueLivernervous systemlipids (amino acids peptides and proteins)CannabinoidEnergy MetabolismNeurosciencepsychological phenomena and processesEndocannabinoidsmedicine.drugInternational Journal of Obesity
researchProduct

Cannabinoid type 1 receptor blockade promotes mitochondrial biogenesis through endothelial nitric oxide synthase expression in white adipocytes

2008

OBJECTIVE—Cannabinoid type 1 (CB1) receptor blockade decreases body weight and adiposity in obese subjects; however, the underlying mechanism is not yet fully understood. Nitric oxide (NO) produced by endothelial NO synthase (eNOS) induces mitochondrial biogenesis and function in adipocytes. This study was undertaken to test whether CB1 receptor blockade increases the espression of eNOS and mitochondrial biogenesis in white adipocytes. RESEARCH DESIGN AND METHODS—We examined the effects on eNOS and mitochondrial biogenesis of selective pharmacological blockade of CB1 receptors by SR141716 (rimonabant) in mouse primary white adipocytes. We also examined eNOS expression and mitochondrial biog…

Malemedicine.medical_specialtyNitric Oxide Synthase Type IIIEndocrinology Diabetes and MetabolismAdipocytes WhiteImmunoblottingCitrate (si)-SynthaseWhite adipose tissueAMP-Activated Protein KinasesProtein Serine-Threonine KinasesMitochondrionDNA MitochondrialMicechemistry.chemical_compoundAdenosine TriphosphatePiperidinesReceptor Cannabinoid CB1AMP-activated protein kinaseMultienzyme ComplexesEnosAdipocyteInternal medicineInternal MedicinemedicineAnimalsPhosphorylationRNA Small InterferingReceptorCells CulturedDose-Response Relationship DrugbiologyReverse Transcriptase Polymerase Chain ReactionFlow Cytometrybiology.organism_classificationMitochondriaMice Inbred C57BLNitric oxide synthaseMetabolismEndocrinologychemistryMitochondrial biogenesisbiology.proteinSettore BIO/14 - FarmacologiaPyrazolesRimonabant
researchProduct