0000000000441951
AUTHOR
Juha Ylinen
Decoupling on the Wiener space and variational estimates for BSDEs
Decoupling on the Wiener Space, Related Besov Spaces, and Applications to BSDEs
We introduce a decoupling method on the Wiener space to define a wide class of anisotropic Besov spaces. The decoupling method is based on a general distributional approach and not restricted to the Wiener space. The class of Besov spaces we introduce contains the traditional isotropic Besov spaces obtained by the real interpolation method, but also new spaces that are designed to investigate backwards stochastic differential equations (BSDEs). As examples we discuss the Besov regularity (in the sense of our spaces) of forward diffusions and local times. It is shown that among our newly introduced Besov spaces there are spaces that characterize quantitative properties of directional derivat…
Weighted bounded mean oscillation applied to backward stochastic differential equations
Abstract We deduce conditional L p -estimates for the variation of a solution of a BSDE. Both quadratic and sub-quadratic types of BSDEs are considered, and using the theory of weighted bounded mean oscillation we deduce new tail estimates for the solution ( Y , Z ) on subintervals of [ 0 , T ] . Some new results for the decoupling technique introduced in Geiss and Ylinen (2019) are obtained as well and some applications of the tail estimates are given.