0000000000441951

AUTHOR

Juha Ylinen

showing 3 related works from this author

Decoupling on the Wiener space and variational estimates for BSDEs

2015

rajoitettu keskiheilahtelubounded mean oscillationstochastic processesstokastiset differentiaaliyhtälötdifferentiaaliyhtälötstochastic differential equationsstokastiset prosessit
researchProduct

Decoupling on the Wiener Space, Related Besov Spaces, and Applications to BSDEs

2021

We introduce a decoupling method on the Wiener space to define a wide class of anisotropic Besov spaces. The decoupling method is based on a general distributional approach and not restricted to the Wiener space. The class of Besov spaces we introduce contains the traditional isotropic Besov spaces obtained by the real interpolation method, but also new spaces that are designed to investigate backwards stochastic differential equations (BSDEs). As examples we discuss the Besov regularity (in the sense of our spaces) of forward diffusions and local times. It is shown that among our newly introduced Besov spaces there are spaces that characterize quantitative properties of directional derivat…

Pure mathematicsGeneral MathematicsType (model theory)Directional derivativeSpace (mathematics)Computer Science::Digital LibrariesStochastic differential equationQuadratic equationFOS: MathematicsAnisotropic Besov spacesMathematicsstokastiset prosessitosittaisdifferentiaaliyhtälöt60H07 60H10 46E35Applied MathematicsProbability (math.PR)Decoupling (cosmology)interpolationFunctional Analysis (math.FA)Mathematics - Functional Analysisbackward stochastic differential equationsComputer Science::Mathematical Softwaredecoupling on the Wiener spacefunktionaalianalyysiMathematics - ProbabilityGenerator (mathematics)Interpolation
researchProduct

Weighted bounded mean oscillation applied to backward stochastic differential equations

2015

Abstract We deduce conditional L p -estimates for the variation of a solution of a BSDE. Both quadratic and sub-quadratic types of BSDEs are considered, and using the theory of weighted bounded mean oscillation we deduce new tail estimates for the solution ( Y , Z ) on subintervals of [ 0 , T ] . Some new results for the decoupling technique introduced in Geiss and Ylinen (2019) are obtained as well and some applications of the tail estimates are given.

Statistics and ProbabilityApplied MathematicsProbability (math.PR)010102 general mathematicsMathematical analysis01 natural sciencesBSDEsBounded mean oscillationdecoupling010104 statistics & probabilityStochastic differential equationvärähtelytQuadratic equationJohn-Nirenberg theoremtail estimatesModeling and Simulation60H10 60G99FOS: MathematicsDecoupling (probability)weighted bounded mean oscillation0101 mathematicsdifferentiaaliyhtälötMathematics - Probabilitystokastiset prosessitMathematicsStochastic Processes and their Applications
researchProduct