0000000000443133
AUTHOR
C. Bretti
Modelling S-carboxymethyl-L-cysteine protonation and activity coefficients in NaClaq and (CH3)4NClaq by SIT and Pitzer equations
Modelling of protonation constants of halloysite clay nanotubes in various aqueous media, at different ionic strengths
In the last decade nanoparticles have assumed more and more importance because of their particular properties mainly due to the nanometer-scale dimensions that confer them a large surface/volume ratio. Among nanomaterials one of the most studied is the halloysite that, as well as the other natural clay minerals is safe for human and environmental friendly. Halloysite is abundant and cheap and is present in large deposits worldwide like those in New Zealand, France, Belgium and China [1,2]. It is similar to kaolin but has a hollow tubular structure that can be attributable to particular crystallization conditions. Typically, halloysite nanotubes (HNTs) are formed by 15 – 20 aluminosilicate l…
Thermodynamic Study For The Protonation Of Halloysite
The Halloysite (Al2Si2O5(OH)4·2H2O) is an abundant and cheap clay and is considered one of the most promising nano structured and naturally occurring clay mineral. Large deposits of this material are present in France, Belgium, China, New Zealand and USA [1,2]. Among the spheroidal, tubular or platy morphologies, the tubular is the most common and abundant one. Typically, halloysite nanotubes (HNTs) are formed by 15 – 20 aluminosilicate layers, having a length of 1 ± 0.5 μm, and inner and outer diameters of 10 – 15 nm and 50 -70 nm, respectively [1]. In each layer, the SiOH and the AlOH groups are disposed on the external and the internal surfaces, respectively. As consequence, in each nano…