0000000000444249
AUTHOR
María-jesús García-murria
Reversible inhibition of CO2fixation by ribulose 1,5-bisphosphate carboxylase/oxygenase through the synergic effect of arsenite and a monothiol
The activity of the photosynthetic carbon-fixing enzyme, ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco), is partially inhibited by arsenite in the millimolar concentration range. However, micromolar arsenite can fully inhibit Rubisco in the presence of a potentiating monothiol such as cysteine, cysteamine, 2-mercaptoethanol or N-acetylcysteine, but not glutathione. Arsenite reacts specifically with the vicinal Cys172-Cys192 from the large subunit of Rubisco and with the monothiol to establish a ternary complex, which is suggested to be a trithioarsenical. The stability of the complex is strongly dependent on the nature of the monothiol. Enzyme activity is fully recovered through …
Structural and functional consequences of the replacement of proximal residues Cys172 and Cys192 in the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase from Chlamydomonas reinhardtii
Proximal Cys(172) and Cys(192) in the large subunit of the photosynthetic enzyme Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase; EC 4.1.1.39) are evolutionarily conserved among cyanobacteria, algae and higher plants. Mutation of Cys(172) has been shown to affect the redox properties of Rubisco in vitro and to delay the degradation of the enzyme in vivo under stress conditions. Here, we report the effect of the replacement of Cys(172) and Cys(192) by serine on the catalytic properties, thermostability and three-dimensional structure of Chlamydomonas reinhardtii Rubisco. The most striking effect of the C172S substitution was an 11% increase in the specificity factor when compared wi…