0000000000445154
AUTHOR
Ingrida Uljane
Fuzzy Relational Mathematical Morphology: Erosion and Dilation
In the recent years, the subject if fuzzy mathematical morphology entered the field of interest of many researchers. In our recent paper [23], we have developed the basis of the (unstructured) L-fuzzy relation mathematical morphology where L is a quantale. In this paper we extend it to the structured case. We introduce structured L-fuzzy relational erosion and dilation operators, study their basic properties, show that under some conditions these operators are dual and form an adjunction pair. Basing on the topological interpretation of these operators, we introduce the category of L-fuzzy relational morphological spaces and their continuous transformations.
Application of Graded Fuzzy Preconcept Lattices in Risk Analysis
A construction of a fuzzy topology from a strong fuzzy metric
<p>After the inception of the concept of a fuzzy metric by I. Kramosil and J. Michalek, and especially after its revision by A. George and G. Veeramani, the attention of many researches was attracted to the topology induced by a fuzzy metric. In most of the works devoted to this subject the resulting topology is an ordinary, that is a crisp one. Recently some researchers showed interest in the fuzzy-type topologies induced by fuzzy metrics. In particular, in the paper (J.J. Mi\~{n}ana, A. \v{S}ostak, {\it Fuzzifying topology induced by a strong fuzzy metric}, Fuzzy Sets and Systems, 6938 DOI information: 10.1016/j.fss.2015.11.005.) a fuzzifying topology ${\mathcal T}:2^X \to [0,1]$ …
On the Measure of Many-Level Fuzzy Rough Approximation for L-Fuzzy Sets
We introduce a many-level version of L-fuzzy rough approximation operators and define measures of approximation obtained by such operators. In a certain sense, theses measures characterize the quality of the resulting approximation. We study properties of such measures and give a topological interpretation of the obtained results.