0000000000445304
AUTHOR
Christian Hanke
Wide Temperature Operation of 40-Gb/s 1550-nm Electroabsorption Modulated Lasers
Electroabsorption modulated lasers (EMLs) exploiting the quantum confined Stark effect need thermoelectric coolers to achieve stable output power levels and dynamic extinction ratios. Temperature-independent operation is reported between 20/spl deg/C and 70/spl deg/C for InGaAlAs-InP-based monolithically integrated 1550-nm EMLs exploiting a shared active area at 40 Gb/s by actively controlling the electroabsorption modulator bias voltage. Dynamic extinction ratios of at least 8 dB and fiber-coupled mean modulated optical power of at least 0.85 mW are obtained over the mentioned temperature range.
Integrated InGaAlAs/InP laser-modulator using an identical multiple quantum well active layer
We present experimental results on 40 Gb/s large-signal modulation performance of 1.31 μm monolithic integrated laser-modulator in the InGaAlAs/InP material system, exploiting the gain and absorption properties of an identical multiple quantum well (MQW) active layer. In continuous wave operation, at 15◦ C, the devices achieved threshold currents < 28 mA, fiber coupled optical power levels up to +0.4 dBm. The measured small signal modulation bandwidth was about 32 GHz. An air-cavity based Fabry-Perot interferometer has been realized to characterize the spectral chirp of the integrated structures in the time domain up to 40 Gb/s.