0000000000446868
AUTHOR
Agris Gailitis
Energy oscillations and a possible route to chaos in a modified Riga dynamo
Starting from the present version of the Riga dynamo experiment with its rotating magnetic eigenfield dominated by a single frequency we ask for those modifications of this set-up that would allow for a non-trivial magnetic field behaviour in the saturation regime. Assuming an increased ratio of azimuthal to axial flow velocity, we obtain energy oscillations with a frequency below the eigenfrequency of the magnetic field. These new oscillations are identified as magneto-inertial waves that result from a slight imbalance of Lorentz and inertial forces. Increasing the azimuthal velocity further, or increasing the total magnetic Reynolds number, we find transitions to a chaotic behaviour of th…
History and results of the Riga dynamo experiments
On 11 November 1999, a self-exciting magnetic eigenfield was detected for the first time in the Riga liquid sodium dynamo experiment. We report on the long history leading to this event, and on the subsequent experimental campaigns which provided a wealth of data on the kinematic and the saturated regime of this dynamo. The present state of the theoretical understanding of both regimes is delineated, and some comparisons with other laboratory dynamo experiments are made.
Magnetohydrodynamic experiments on cosmic magnetic fields
It is widely known that cosmic magnetic fields, i.e. the fields of planets, stars, and galaxies, are produced by the hydromagnetic dynamo effect in moving electrically conducting fluids. It is less well known that cosmic magnetic fields play also an active role in cosmic structure formation by enabling outward transport of angular momentum in accretion disks via the magnetorotational instability (MRI). Considerable theoretical and computational progress has been made in understanding both processes. In addition to this, the last ten years have seen tremendous efforts in studying both effects in liquid metal experiments. In 1999, magnetic field self-excitation was observed in the large scale…
Mathematical background of the Riga dynamo experiment
The Riga dynamo experiment is a laboratory model of the natural process that is responsible for all environmental magnetic-fields which are generated without human interference. This applies to the field of the Earth, the Sun, stars, and even galaxies which are produced by intense motions of large volumes of good electro-conducting fluids. For our experiment, we use molten sodium – the best liquid electro-conductor available in the laboratory. Approximately 2 m3 of molten sodium are filled into a prolonged cylinder, at the top of which rotates a propeller powered by 200 kW from two motors. The cylinder is divided by thin coaxial inner walls into three parts: in the inner tube the propeller …
Coupled fluid-flow and magnetic-field simulation of the Riga dynamo experiment
Magnetic fields of planets, stars, and galaxies result from self-excitation in moving electroconducting fluids, also known as the dynamo effect. This phenomenon was recently experimentally confirmed in the Riga dynamo experiment [ A. Gailitis et al., Phys. Rev. Lett. 84, 4365 (2000) ; A. Gailitis et al., Physics of Plasmas 11, 2838 (2004) ], consisting of a helical motion of sodium in a long pipe followed by a straight backflow in a surrounding annular passage, which provided adequate conditions for magnetic-field self-excitation. In this paper, a first attempt to simulate computationally the Riga experiment is reported. The velocity and turbulence fields are modeled by a finite-volume Navi…
Magnetic field dynamos and magnetically triggered flow instabilities
The project A2 of the LIMTECH Alliance aimed at a better understanding of those magnetohydrodynamic instabilities that are relevant for the generation and the action of cosmic magnetic fields. These comprise the hydromagnetic dynamo effect and various magnetically triggered flow instabilities, such as the magnetorotational instability and the Tayler instability. The project was intended to support the experimental capabilities to become available in the framework of the DREsden Sodium facility for DYNamo and thermohydraulic studies (DRESDYN). An associated starting grant was focused on the dimensioning of a liquid metal experiment on the newly found magnetic destabilization of rotating flow…
Influence of electromagnetic boundary conditions onto the onset of dynamo action in laboratory experiments
We study the onset of dynamo action of the Riga and Karlsruhe experiments with the addition of an external wall, the electro-magnetic properties of which being different from those of the fluid in motion. We consider a wall of different thickness, conductivity and permeability. We also consider the case of a ferro-fluid in motion.
Colloquium: Laboratory experiments on hydromagnetic dynamos
Cosmic magnetic fields, including the fields of planets, stars, and galaxies, are believed to be caused by dynamo action in moving electrically conducting fluids. While the theory and numerics of hydromagnetic dynamos have flourished during recent decades, an experimental validation of the effect was missing until recently. We sketch the long history towards a working laboratory dynamo. We report on the first successful experiments at the sodium facilities in Riga and Karlsruhe, and on other experiments which are carried out or planned at various places in the world.