0000000000446869

AUTHOR

Frank Stefani

showing 6 related works from this author

Energy oscillations and a possible route to chaos in a modified Riga dynamo

2010

Starting from the present version of the Riga dynamo experiment with its rotating magnetic eigenfield dominated by a single frequency we ask for those modifications of this set-up that would allow for a non-trivial magnetic field behaviour in the saturation regime. Assuming an increased ratio of azimuthal to axial flow velocity, we obtain energy oscillations with a frequency below the eigenfrequency of the magnetic field. These new oscillations are identified as magneto-inertial waves that result from a slight imbalance of Lorentz and inertial forces. Increasing the azimuthal velocity further, or increasing the total magnetic Reynolds number, we find transitions to a chaotic behaviour of th…

PhysicsEarth and Planetary Astrophysics (astro-ph.EP)Lorentz transformationChaoticFluid Dynamics (physics.flu-dyn)Magnetic Reynolds numberFOS: Physical sciencesAstronomy and AstrophysicsPhysics - Fluid DynamicsPhysics - Plasma PhysicsMagnetic fieldGeophysics (physics.geo-ph)Plasma Physics (physics.plasm-ph)Physics::Fluid DynamicsPhysics - Geophysicssymbols.namesakeAxial compressorSpace and Planetary ScienceQuantum electrodynamicsFictitious forcesymbolsSaturation (magnetic)DynamoAstrophysics - Earth and Planetary Astrophysics
researchProduct

History and results of the Riga dynamo experiments

2008

On 11 November 1999, a self-exciting magnetic eigenfield was detected for the first time in the Riga liquid sodium dynamo experiment. We report on the long history leading to this event, and on the subsequent experimental campaigns which provided a wealth of data on the kinematic and the saturated regime of this dynamo. The present state of the theoretical understanding of both regimes is delineated, and some comparisons with other laboratory dynamo experiments are made.

Astrophysics (astro-ph)Fluid Dynamics (physics.flu-dyn)General EngineeringFOS: Physical sciencesEnergy Engineering and Power TechnologyChamp magnetiqueGeophysicsPhysics - Fluid DynamicsAstrophysicsPhysics::GeophysicsPhysics::Fluid DynamicsNuclear magnetic resonanceDynamo theoryMagnetohydrodynamicsGeologyDynamo
researchProduct

Magnetohydrodynamic experiments on cosmic magnetic fields

2008

It is widely known that cosmic magnetic fields, i.e. the fields of planets, stars, and galaxies, are produced by the hydromagnetic dynamo effect in moving electrically conducting fluids. It is less well known that cosmic magnetic fields play also an active role in cosmic structure formation by enabling outward transport of angular momentum in accretion disks via the magnetorotational instability (MRI). Considerable theoretical and computational progress has been made in understanding both processes. In addition to this, the last ten years have seen tremendous efforts in studying both effects in liquid metal experiments. In 1999, magnetic field self-excitation was observed in the large scale…

PhysicsStructure formationApplied MathematicsAstrophysics (astro-ph)Fluid Dynamics (physics.flu-dyn)Computational MechanicsFOS: Physical sciencesPhysics - Fluid DynamicsAstrophysicsInstabilityComputational physicsMagnetic fieldPhysics::Fluid DynamicsMagnetorotational instabilityDynamo theoryMagnetohydrodynamicsCouette flowDynamo
researchProduct

Coupled fluid-flow and magnetic-field simulation of the Riga dynamo experiment

2006

Magnetic fields of planets, stars, and galaxies result from self-excitation in moving electroconducting fluids, also known as the dynamo effect. This phenomenon was recently experimentally confirmed in the Riga dynamo experiment [ A. Gailitis et al., Phys. Rev. Lett. 84, 4365 (2000) ; A. Gailitis et al., Physics of Plasmas 11, 2838 (2004) ], consisting of a helical motion of sodium in a long pipe followed by a straight backflow in a surrounding annular passage, which provided adequate conditions for magnetic-field self-excitation. In this paper, a first attempt to simulate computationally the Riga experiment is reported. The velocity and turbulence fields are modeled by a finite-volume Navi…

Physicsplasma simulationfinite volume methodsTurbulenceMechanicsCondensed Matter Physicsplasma transport processesMagnetic fieldPhysics::Fluid DynamicsCoupling (physics)Classical mechanicsFlow velocityplasma turbulenceDynamo theoryFluid dynamicsMagnetohydrodynamicsNavier-Stokes equationsplasma magnetohydrodynamicsfinite difference methodsDynamo
researchProduct

Magnetic field dynamos and magnetically triggered flow instabilities

2017

The project A2 of the LIMTECH Alliance aimed at a better understanding of those magnetohydrodynamic instabilities that are relevant for the generation and the action of cosmic magnetic fields. These comprise the hydromagnetic dynamo effect and various magnetically triggered flow instabilities, such as the magnetorotational instability and the Tayler instability. The project was intended to support the experimental capabilities to become available in the framework of the DREsden Sodium facility for DYNamo and thermohydraulic studies (DRESDYN). An associated starting grant was focused on the dimensioning of a liquid metal experiment on the newly found magnetic destabilization of rotating flow…

F300FOS: Physical sciencesF5007. Clean energy01 natural sciencesInstability010305 fluids & plasmasPhysics - GeophysicsMagnetorotational instability0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsMagnetohydrodynamic drive[NLIN]Nonlinear Sciences [physics]010306 general physicsPhysics[PHYS]Physics [physics]Fluid Dynamics (physics.flu-dyn)MechanicsPhysics - Fluid Dynamics[PHYS.ASTR.SR]Physics [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR]Magnetic fieldGeophysics (physics.geo-ph)Shear (sheet metal)Flow (mathematics)Dynamo theory[NLIN.NLIN-CD]Nonlinear Sciences [physics]/Chaotic Dynamics [nlin.CD][PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Dynamo
researchProduct

Colloquium: Laboratory experiments on hydromagnetic dynamos

2002

Cosmic magnetic fields, including the fields of planets, stars, and galaxies, are believed to be caused by dynamo action in moving electrically conducting fluids. While the theory and numerics of hydromagnetic dynamos have flourished during recent decades, an experimental validation of the effect was missing until recently. We sketch the long history towards a working laboratory dynamo. We report on the first successful experiments at the sodium facilities in Riga and Karlsruhe, and on other experiments which are carried out or planned at various places in the world.

PhysicsStarsCOSMIC cancer databasePlanetAstrophysics::Solar and Stellar AstrophysicsGeneral Physics and AstronomyAstrophysicsExperimental validationMagnetohydrodynamicsGalaxyPhysics::GeophysicsDynamoReviews of Modern Physics
researchProduct