0000000000446885

AUTHOR

Julie Lamoureux

showing 3 related works from this author

Search for Extraterrestrial Point Sources of Neutrinos with AMANDA-II

2003

We present the results of a search for point sources of high energy neutrinos in the northern hemisphere using AMANDA-II data collected in the year 2000. Included are flux limits on several AGN blazars, microquasars, magnetars and other candidate neutrino sources. A search for excesses above a random background of cosmic-ray-induced atmospheric neutrinos and misreconstructed downgoing cosmic-ray muons reveals no statistically significant neutrino point sources. We show that AMANDA-II has achieved the sensitivity required to probe known TeV gamma-ray sources such as the blazar Markarian 501 in its 1997 flaring state at a level where neutrino and gamma-ray fluxes are equal.

AMANDAcosmic radiation [neutrino]Solar neutrinoAstrophysics::High Energy Astrophysical Phenomenaparticle source [cosmic radiation]General Physics and AstronomyFOS: Physical sciencesAstrophysicsmagnetic [matter]Astrophysicsnumerical methodsddc:550quasarBlazarAstroparticle physicsPhysicsphotomultipliercosmic radiation [muon]water [Cherenkov counter]Astrophysics (astro-ph)AstronomySolar neutrino problemCosmic neutrino backgroundNeutrino detectorMeasurements of neutrino speedHigh Energy Physics::Experimentflux [cosmic radiation]blazar [AGN]data managementNeutrinoupper limitexperimental results
researchProduct

Limits on diffuse fluxes of high energy extraterrestrial neutrinos with the AMANDA-B10 detector

2003

Data from the AMANDA-B10 detector taken during the austral winter of 1997 have been searched for a diffuse flux of high energy extraterrestrial muon-neutrinos, as predicted from, e.g., the sum of all active galaxies in the universe. This search yielded no excess events above those expected from the background atmospheric neutrinos, leading to upper limits on the extraterrestrial neutrino flux. For an assumed E^-2 spectrum, a 90% classical confidence level upper limit has been placed at a level E^2 Phi(E) = 8.4 x 10^-7 GeV cm^-2 s^-1 sr^-1 (for a predominant neutrino energy range 6-1000 TeV) which is the most restrictive bound placed by any neutrino detector. When specific predicted spectral…

PhysicsPhysics::Instrumentation and Detectorsmedia_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaAstrophysics (astro-ph)High Energy Physics::PhenomenologyFOS: Physical sciencesGeneral Physics and AstronomyQuasarCosmic rayAstrophysicsAstrophysicsUniverseMassless particlePhysics::Popular PhysicsExtraterrestrial lifeHigh Energy Physics::ExperimentNeutrinoNeutrino oscillationLeptonmedia_common
researchProduct

The AMANDA neutrino detector - Status report

2000

Abstract The first stage of the AMANDA High Energy Neutrino Detector at the south Pole, the 302 PMT array AMANDA-B10, is taking data since 1997. We describe results on atmospheric neutrinos, limits on indirect WIMP detection, seasonal muon flux variation, relativistic monopole flux limits, a search for gravitational collapse neutrinos, and a depth scan of the optical ice properties. The next stage 19-string detector AMANDA-II with ∼650 PMTs will be completed in spring 2000.

PhysicsNuclear and High Energy PhysicsParticle physicsPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaDetectorCosmic rayAtomic and Molecular Physics and OpticsParticle detectorMassless particleWIMPNeutrino detectorHigh Energy Physics::ExperimentNeutrinoLeptonNuclear Physics B - Proceedings Supplements
researchProduct