0000000000447076

AUTHOR

Renzo Guerrini

0000-0002-7272-7079

Correction: The landscape of epilepsy-related GATOR1 variants

International audience; The original version of this article contained an error in the spelling of the author Erik H. Niks, which was incorrectly given as Erik Niks. This has now been corrected in both the PDF and HTML versions of the article.

research product

Diagnostic Targeted Resequencing in 349 Patients with Drug-Resistant Pediatric Epilepsies Identifies Causative Mutations in 30 Different Genes

Targeted resequencing gene panels are used in the diagnostic setting to identify gene defects in epilepsy. We performed targeted resequencing using a 30-genes panel and a 95-genes panel in 349 patients with drug-resistant epilepsies beginning in the first years of life. We identified 71 pathogenic variants, 42 of which novel, in 30 genes, corresponding to 20.3% of the probands. In 66% of mutation positive patients seizures onset occurred before age 6 months. The 95-genes panel allowed a genetic diagnosis in 22 (6.3%) patients that would have otherwise been missed using the 30-gene panel. About 50% of mutations were identified in genes coding for sodium and potassium channel components. SCN2…

research product

The landscape of epilepsy-related GATOR1 variants

Purpose:\ud \ud To define the phenotypic and mutational spectrum of epilepsies related to DEPDC5, NPRL2 and NPRL3 genes encoding the GATOR1 complex, a negative regulator of the mTORC1 pathway.\ud \ud Methods:\ud \ud We analyzed clinical and genetic data of 73 novel probands (familial and sporadic) with epilepsy-related variants in GATOR1-encoding genes and proposed new guidelines for clinical interpretation of GATOR1 variants.\ud \ud Results:\ud \ud The GATOR1 seizure phenotype consisted mostly in focal seizures (e.g., hypermotor or frontal lobe seizures in 50%), with a mean age at onset of 4.4 years, often sleep-related and drug-resistant (54%), and associated with focal cortical dysplasia…

research product

No evidence of ATP1A2 involvement in 12 multiplex Italian families with benign familial infantile seizures

A missense mutation in the gene encoding the alpha(2) Subunit of the Na+,K+ ATPase pump (ATP1A2) was found in a family with both familial hemiplegic migraine (FHM) and Benign Familial Infantile Seizures (BFIC). As it is still unclear whether ATP1A2 is responsible for pure BFIC syndromes, we checked mutations of the ATP1A2 gene in probands of 12 Italian multiplex families with pure BFIC, who were negative for mutations in the SCN2A gene. We screened the ATP1A2 gene by denaturing high performance liquid chromatography (D-HPLC) and direct sequencing of DNA fragments showing an aberrant elution pattern. We found one exonic variant and five intronic variants, none leading to significant amino ac…

research product

Increased sensitivity of the neuronal nicotinic receptor alpha-2 subunit causes familial epilepsy with nocturnal wandering and ictal fear

Sleep has traditionally been recognized as a precipitating factor for some forms of epilepsy, although differential diagnosis between some seizure types and parasomnias may be difficult. Autosomal dominant frontal lobe epilepsy is characterized by nocturnal seizures with hyperkinetic automatisms and poorly organized stereotyped movements and has been associated with mutations of the α4 and β2 subunits of the neuronal nicotinic acetylcholine receptor. We performed a clinical and molecular genetic study of a large pedigree segregating sleep-related epilepsy in which seizures are associated with fear sensation, tongue movements, and nocturnal wandering, closely resembling nightmares and sleep …

research product

TBC1D24-TLDc-related epilepsy exercise-induced dystonia: rescue by antioxidants in a disease model

Genetic mutations in TBC1D24 have been associated with multiple phenotypes, with epilepsy being the main clinical manifestation. The TBC1D24 protein consists of the unique association of a Tre2/Bub2/Cdc16 (TBC) domain and a TBC/lysin motif domain/catalytic (TLDc) domain. More than 50 missense and loss-of-function mutations have been described and are spread over the entire protein. Through whole genome/exome sequencing we identified compound heterozygous mutations, R360H and G501R, within the TLDc domain, in an index family with a Rolandic epilepsy exercise-induced dystonia phenotype (http://omim.org/entry/608105). A 20-year long clinical follow-up revealed that epilepsy was self-limited in…

research product

HCN1 mutation spectrum: from neonatal epileptic encephalopathy to benign generalized epilepsy and beyond

International audience; Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels control neuronal excitability and their dysfunction has been linked to epileptogenesis but few individuals with neurological disorders related to variants altering HCN channels have been reported so far. In 2014, we described five individuals with epileptic encephalopathy due to de novo HCN1 variants. To delineate HCN1-related disorders and investigate genotype-phenotype correlations further, we assembled a cohort of 33 unpublished patients with novel pathogenic or likely pathogenic variants: 19 probands carrying 14 different de novo mutations and four families with dominantly inherited variants segre…

research product

NEXMIF encephalopathy: an X-linked disorder with male and female phenotypic patterns

Contains fulltext : 231688.pdf (Publisher’s version ) (Closed access) PURPOSE: Pathogenic variants in the X-linked gene NEXMIF (previously KIAA2022) are associated with intellectual disability (ID), autism spectrum disorder, and epilepsy. We aimed to delineate the female and male phenotypic spectrum of NEXMIF encephalopathy. METHODS: Through an international collaboration, we analyzed the phenotypes and genotypes of 87 patients with NEXMIF encephalopathy. RESULTS: Sixty-three females and 24 males (46 new patients) with NEXMIF encephalopathy were studied, with 30 novel variants. Phenotypic features included developmental delay/ID in 86/87 (99%), seizures in 71/86 (83%) and multiple comorbidi…

research product