0000000000447076

AUTHOR

Renzo Guerrini

0000-0002-7272-7079

showing 8 related works from this author

Correction: The landscape of epilepsy-related GATOR1 variants

2019

International audience; The original version of this article contained an error in the spelling of the author Erik H. Niks, which was incorrectly given as Erik Niks. This has now been corrected in both the PDF and HTML versions of the article.

0303 health sciencesbusiness.industryPublished ErratumMEDLINEmedicine.diseasecomputer.software_genreSpelling03 medical and health sciencesEpilepsy0302 clinical medicine[SDV.GEN.GH]Life Sciences [q-bio]/Genetics/Human geneticsmedicineArtificial intelligencebusinessPsychologycomputer030217 neurology & neurosurgeryGenetics (clinical)Natural language processing030304 developmental biology
researchProduct

Diagnostic Targeted Resequencing in 349 Patients with Drug-Resistant Pediatric Epilepsies Identifies Causative Mutations in 30 Different Genes

2017

Targeted resequencing gene panels are used in the diagnostic setting to identify gene defects in epilepsy. We performed targeted resequencing using a 30-genes panel and a 95-genes panel in 349 patients with drug-resistant epilepsies beginning in the first years of life. We identified 71 pathogenic variants, 42 of which novel, in 30 genes, corresponding to 20.3% of the probands. In 66% of mutation positive patients seizures onset occurred before age 6 months. The 95-genes panel allowed a genetic diagnosis in 22 (6.3%) patients that would have otherwise been missed using the 30-gene panel. About 50% of mutations were identified in genes coding for sodium and potassium channel components. SCN2…

0301 basic medicineProbandMaleCDKL5Drug Resistancemedicine.disease_causeBioinformaticsEpilepsyAnticonvulsantSTXBP1Age of OnsetChildGenetics (clinical)AlleleMutationepilepsy; next-generation sequencing; gene panel; mutationPhenotypeMagnetic Resonance ImagingSettore MED/39 - Neuropsichiatria Infantile3. Good healthPhenotypeChild PreschoolAnticonvulsantsFemaleSequence AnalysisHumanAdolescentGenotypeGenetic Association StudieBiologyMECP203 medical and health sciencesGeneticgene panelGeneticsmedicineHumansGenetic Predisposition to DiseasePreschoolGeneAllelesGenetic Association StudiesGene Expression ProfilingInfant NewbornComputational BiologyInfantMolecular Sequence AnnotationDNASequence Analysis DNANewbornmedicine.disease030104 developmental biologyepilepsynext-generation sequencingmutation
researchProduct

The landscape of epilepsy-related GATOR1 variants

2019

Purpose:\ud \ud To define the phenotypic and mutational spectrum of epilepsies related to DEPDC5, NPRL2 and NPRL3 genes encoding the GATOR1 complex, a negative regulator of the mTORC1 pathway.\ud \ud Methods:\ud \ud We analyzed clinical and genetic data of 73 novel probands (familial and sporadic) with epilepsy-related variants in GATOR1-encoding genes and proposed new guidelines for clinical interpretation of GATOR1 variants.\ud \ud Results:\ud \ud The GATOR1 seizure phenotype consisted mostly in focal seizures (e.g., hypermotor or frontal lobe seizures in 50%), with a mean age at onset of 4.4 years, often sleep-related and drug-resistant (54%), and associated with focal cortical dysplasia…

Male0301 basic medicineProbandDEPDC5SUDEP030105 genetics & heredityBioinformaticsLoss of Function Mutation/geneticsEpilepsyINDEL MutationLoss of Function MutationmTORC1 pathwayGenetics(clinical)ChildGenetics (clinical)Multiprotein Complexes/geneticsBrugada SyndromeDNA Copy Number VariationBrugada syndromeINDEL Mutation/geneticsGTPase-Activating ProteinsNPRL3SeizureDEPDC5PhenotypePedigree3. Good healthBrugada Syndrome/geneticsChild PreschoolFemaleHumanSignal TransductionDNA Copy Number VariationsAdolescentSeizures/complicationsMechanistic Target of Rapamycin Complex 1/geneticsDNA Copy Number Variations/geneticsMechanistic Target of Rapamycin Complex 1Tumor Suppressor Proteins/geneticsArticleFocal cortical dysplasia03 medical and health sciencesSeizuresGTPase-Activating Proteins/geneticsmedicineHumansGenetic Predisposition to DiseaseDEPDC5; Focal cortical dysplasia; Genetic focal epilepsy; mTORC1 pathway; SUDEPGenetic focal epilepsyEpilepsy/complicationsRepressor Proteins/geneticsEpilepsybusiness.industryGTPase-Activating ProteinTumor Suppressor ProteinsInfant NewbornCorrectionInfantRepressor ProteinCortical dysplasiamedicine.diseaseddc:616.8Repressor Proteins030104 developmental biologyFrontal lobe seizures[SDV.GEN.GH]Life Sciences [q-bio]/Genetics/Human geneticsMultiprotein ComplexesMultiprotein ComplexeSignal Transduction/geneticsHuman medicinebusiness
researchProduct

No evidence of ATP1A2 involvement in 12 multiplex Italian families with benign familial infantile seizures

2005

A missense mutation in the gene encoding the alpha(2) Subunit of the Na+,K+ ATPase pump (ATP1A2) was found in a family with both familial hemiplegic migraine (FHM) and Benign Familial Infantile Seizures (BFIC). As it is still unclear whether ATP1A2 is responsible for pure BFIC syndromes, we checked mutations of the ATP1A2 gene in probands of 12 Italian multiplex families with pure BFIC, who were negative for mutations in the SCN2A gene. We screened the ATP1A2 gene by denaturing high performance liquid chromatography (D-HPLC) and direct sequencing of DNA fragments showing an aberrant elution pattern. We found one exonic variant and five intronic variants, none leading to significant amino ac…

ProbandBenign NeonatalMigraine DisordersMutation MissenseBenign familial infantile convulsionsBiologymedicine.disease_causeDenaturing high performance liquid chromatographyBenign familial infantile convulsions; Epilepsy; Familial hemiplegic migraine; Genetics; Epilepsy Benign Neonatal; Exons; Family Health; Humans; Infant; Introns; Italy; Migraine Disorders; Sodium-Potassium-Exchanging ATPase; Mutation MissenseExonATP1A2GeneticsmedicineHumansMissense mutationGeneFamilial hemiplegic migraineFamilial hemiplegic migraineFamily HealthGeneticsMutationEpilepsyGeneral NeuroscienceInfantExonsmedicine.diseaseEpilepsy Benign NeonatalIntronsItalyMutationBenign familial infantile convulsionMissenseSodium-Potassium-Exchanging ATPaseNeuroscience Letters
researchProduct

Increased sensitivity of the neuronal nicotinic receptor alpha-2 subunit causes familial epilepsy with nocturnal wandering and ictal fear

2006

Sleep has traditionally been recognized as a precipitating factor for some forms of epilepsy, although differential diagnosis between some seizure types and parasomnias may be difficult. Autosomal dominant frontal lobe epilepsy is characterized by nocturnal seizures with hyperkinetic automatisms and poorly organized stereotyped movements and has been associated with mutations of the α4 and β2 subunits of the neuronal nicotinic acetylcholine receptor. We performed a clinical and molecular genetic study of a large pedigree segregating sleep-related epilepsy in which seizures are associated with fear sensation, tongue movements, and nocturnal wandering, closely resembling nightmares and sleep …

AdultMalemedicine.medical_specialtyAdolescentSomnambulismMolecular Sequence DataMutation MissenseAutosomal dominant nocturnal frontal lobe epilepsyReceptors NicotinicBiologymedicine.disease_causeLigandsNicotinicArticleEpilepsyBIO/09 - FISIOLOGIAInternal medicineAcetylcholine; Adolescent; Adult; Aged; Aged 80 and over; Amino Acid Sequence; Epilepsy; Female; Humans; Ligands; Male; Molecular Sequence Data; Mutation Missense; Neurons; Pedigree; Receptors Nicotinic; Somnambulism; FearReceptorsmedicine80 and overGeneticsHumansIctalGenetics(clinical)Amino Acid SequenceGenetics (clinical)Acetylcholine receptorAgedAged 80 and overNeuronsMutationEpilepsySeizure typesFearmedicine.diseaseAcetylcholinePedigreeNicotinic acetylcholine receptorNicotinic agonistEndocrinologyMutationnAChR patch-clamp ADNFLE sleep-related epilepsy M1 TM1 ACh nicotineSettore MED/26 - NeurologiaFemaleMissense
researchProduct

TBC1D24-TLDc-related epilepsy exercise-induced dystonia: rescue by antioxidants in a disease model

2019

Genetic mutations in TBC1D24 have been associated with multiple phenotypes, with epilepsy being the main clinical manifestation. The TBC1D24 protein consists of the unique association of a Tre2/Bub2/Cdc16 (TBC) domain and a TBC/lysin motif domain/catalytic (TLDc) domain. More than 50 missense and loss-of-function mutations have been described and are spread over the entire protein. Through whole genome/exome sequencing we identified compound heterozygous mutations, R360H and G501R, within the TLDc domain, in an index family with a Rolandic epilepsy exercise-induced dystonia phenotype (http://omim.org/entry/608105). A 20-year long clinical follow-up revealed that epilepsy was self-limited in…

MaleModels Molecular0301 basic medicineProtein ConformationAmino Acid Motifsalpha-TocopherolMutantCrystallography X-RayPHENOTYPECompound heterozygosityAntioxidantsAnimals Genetically ModifiedEpilepsy0302 clinical medicineCatalytic DomainDrosophila ProteinsMissense mutationoxidative stressChildTLDC DOMAINVITAMIN-EExome sequencingSequence DeletionNeuronsDystoniaGeneticsexercise-induced dystoniaTBC1D24GTPase-Activating ProteinsANNOTATIONSEpilepsy RolandicPhenotypeRecombinant ProteinsPedigree3. Good healthRolandic epilepsyDystoniaDrosophila melanogasterChild PreschoolFemaleSettore MED/26 - NeurologiaSynaptic VesiclesDrosophila melanogasterPROTEIN STABILITYLife Sciences & BiomedicineLocomotionAdolescentPhysical ExertionMutation MissenseClinical NeurologyPREDICTIONSBiology03 medical and health sciencesmedicineAnimalsHumansAmino Acid SequenceCOMPARTMENToxidative streScience & TechnologySequence Homology Amino AcidMUTATIONSNeurosciencesInfantBiological TransportDEGRADATIONmedicine.diseasebiology.organism_classificationAcetylcysteineDisease Models AnimalOxidative Stress030104 developmental biologyrab GTP-Binding ProteinsSEIZURESNeurosciences & NeurologyNeurology (clinical)Reactive Oxygen SpeciesSequence Alignment030217 neurology & neurosurgery
researchProduct

HCN1 mutation spectrum: from neonatal epileptic encephalopathy to benign generalized epilepsy and beyond

2018

International audience; Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels control neuronal excitability and their dysfunction has been linked to epileptogenesis but few individuals with neurological disorders related to variants altering HCN channels have been reported so far. In 2014, we described five individuals with epileptic encephalopathy due to de novo HCN1 variants. To delineate HCN1-related disorders and investigate genotype-phenotype correlations further, we assembled a cohort of 33 unpublished patients with novel pathogenic or likely pathogenic variants: 19 probands carrying 14 different de novo mutations and four families with dominantly inherited variants segre…

0301 basic medicineProbandMaleModels MolecularPotassium Channels[SDV]Life Sciences [q-bio]Medizinmedicine.disease_causeEpileptogenesisMembrane PotentialsEpilepsy0302 clinical medicineHyperpolarization-Activated Cyclic Nucleotide-Gated ChannelsMissense mutationChildGeneticsMutationMiddle AgedPhenotype3. Good healthTransmembrane domainclinical spectrum; epilepsy; HCN1; intellectual disability; ion channelintellectual disabilityChild PreschoolEpilepsy GeneralizedFemaleSpasms InfantileAdultAdolescentCHO CellsBiology03 medical and health sciencesYoung AdultCricetulusHCN1medicineAnimalsHumansGeneralized epilepsyGenetic Association StudiesAgedInfantmedicine.diseaseElectric Stimulationclinical spectrum030104 developmental biologyMutationion channelMutagenesis Site-DirectedepilepsyNeurology (clinical)030217 neurology & neurosurgery
researchProduct

NEXMIF encephalopathy: an X-linked disorder with male and female phenotypic patterns

2021

Contains fulltext : 231688.pdf (Publisher’s version ) (Closed access) PURPOSE: Pathogenic variants in the X-linked gene NEXMIF (previously KIAA2022) are associated with intellectual disability (ID), autism spectrum disorder, and epilepsy. We aimed to delineate the female and male phenotypic spectrum of NEXMIF encephalopathy. METHODS: Through an international collaboration, we analyzed the phenotypes and genotypes of 87 patients with NEXMIF encephalopathy. RESULTS: Sixty-three females and 24 males (46 new patients) with NEXMIF encephalopathy were studied, with 30 novel variants. Phenotypic features included developmental delay/ID in 86/87 (99%), seizures in 71/86 (83%) and multiple comorbidi…

MalePediatricsmedicine.medical_specialtyINTELLECTUAL DISABILITYAutism Spectrum DisorderEncephalopathyNerve Tissue ProteinsILAE COMMISSIONMOSAICISMEpilepsy/geneticsCLASSIFICATIONEpilepsyBrain Diseases/geneticsGenes X-LinkedSeizuresIntellectual disabilityGenotypemedicineHumansdevelopmental and epileptic encephalopathyMYOCLONIAAtonic seizureGenetics (clinical)Brain Diseasesddc:618Neurodevelopmental disorders Donders Center for Medical Neuroscience [Radboudumc 7]KIAA2022business.industryMUTATIONSmedicine.diseasePhenotypeAutism Spectrum Disorder/geneticsGenes X-Linked/geneticsAutism spectrum disorderintellectual disabilityNEXMIFAutismepilepsyFemaleINACTIVATIONHuman medicineSeizures/geneticsbusinessPOSITION PAPERGenetics in Medicine
researchProduct