0000000000447093
AUTHOR
Kamila Stokowa-sołtys
CH vs. HC—Promiscuous Metal Sponges in Antimicrobial Peptides and Metallophores
Histidine and cysteine residues, with their imidazole and thiol moieties that deprotonate at approximately physiological pH values, are primary binding sites for Zn(II), Ni(II) and Fe(II) ions and are thus ubiquitous both in peptidic metallophores and in antimicrobial peptides that may use nutritional immunity as a way to limit pathogenicity during infection. We focus on metal complex solution equilibria of model sequences encompassing Cys–His and His–Cys motifs, showing that the position of histidine and cysteine residues in the sequence has a crucial impact on its coordination properties. CH and HC motifs occur as many as 411 times in the antimicrobial peptide database, while …
Zn(II)-alloferon complexes - Similar sequence, different coordination modes, no antibacterial activity.
Often, in the search for a highly defined scientific phenomenon, a different one becomes apparent. This was also the case of this work, in the scope of which we planned to search for metal-enhanced, novel antibacterial/ antifungal compounds. Instead, we denied the existence of such and revealed the details of the bioinorganic chemistry of Zn(II)-alloferon complexes. Zinc(II) complexes of alloferon 1 and 2, ligands with a sequential difference of one amino acid only, show a substantially different coordination pattern at physiological pH. In the case of Zn(II)-alloferon 1 species, a histamine-like binding mode is observed (N-terminal amine and imidazole of His-1) and the coordination sphere …
Zinc(II)—The Overlooked Éminence Grise of Chloroquine’s Fight against COVID-19?
The authors would like to thank Agnieszka Michalczuk for providing us with her artistic vision of SARS-CoV-2.