0000000000447106
AUTHOR
Karsten Held
Momentum structure of the self-energy and its parametrization for the two-dimensional Hubbard model
We compute the self-energy for the half-filled Hubbard model on a square lattice using lattice quantum Monte Carlo simulations and the dynamical vertex approximation. The self-energy is strongly momentum dependent, but it can be parametrized via the non-interacting energy-momentum dispersion $\varepsilon_{\mathbf{k}}$, except for pseudogap features right at the Fermi edge. That is, it can be written as $\Sigma(\varepsilon_{\mathbf{k}},\omega)$, with two energy-like parameters ($\varepsilon$, $\omega$) instead of three ($k_x$, $k_y$ and $\omega$). The self-energy has two rather broad and weakly dispersing high energy features and a sharp $\omega= \varepsilon_{\mathbf{k}}$ feature at high tem…
Realistic investigations of correlated electron systems with LDA + DMFT
Conventional band structure calculations in the local density approximation (LDA) [1–3] are highly successful for many materials, but miss important aspects of the physics and energetics of strongly correlated electron systems, such as transition metal oxides and f-electron systems displaying, e.g., Mott insulating and heavy quasiparticle behavior. In this respect, the LDA + DMFT approach which merges LDA with a modern many-body approach, the dynamical mean-field theory (DMFT), has proved to be a breakthrough for the realistic modeling of correlated materials. Depending on the strength of the electronic correlation, a LDA + DMFT calculation yields the weakly correlated LDA results, a strong…
Fate of the false Mott-Hubbard transition in two dimensions
We have studied the impact of non-local electronic correlations at all length scales on the Mott-Hubbard metal-insulator transition in the unfrustrated two-dimensional Hubbard model. Combining dynamical vertex approximation, lattice quantum Monte-Carlo and variational cluster approximation, we demonstrate that scattering at long-range fluctuations, i.e., Slater-like paramagnons, opens a spectral gap at weak-to-intermediate coupling -- irrespectively of the preformation of localized or short-ranged magnetic moments. This is the reason, why the two-dimensional Hubbard model is insulating at low enough temperatures for any (finite) interaction and no Mott-Hubbard transition is observed.