Constructal law optimization of a boiler
The paper aims at the optimization of the design of a biomass boiler under the inspiration of the Constructal Law by Bejan. The boiler is of the smoke tubes typology, fuel being biomass pellets. The smoke tubes are 16 and are placed in a staggered configuration. A model is built in MATLAB environment, based on empirical correlations and the mean log temperature methodology. The analysis is based on the development of a wide parametric analysis that involves variations of diameters, numbers and positioning of the tubes. Results are based on the concept of the overall performance coefficient methodology and investigate both the pressure drops variation and the thermal power generated in the d…
A Constructal Law optimization of a boiler inspired by Life Cycle thinking
Abstract The aim of the paper is to explore how design optimization contributes to a technology's ecological evolution. The article develops this concept through an application of Constructal Law, used to account for the “evolution” of technologies design (configuration, shape, structure, pattern, rhythm), and Life Cycle Assessment (LCA), used for quantifying the environmental impacts of the design choices. The combination of both methods assesses how technology evolution affects the environment during its life, extending the concept of evolution of design. The study is applied to a case study of a real biomass boiler. The study analyses basic case and a series of alternative scenarios opti…
Introducing exergy analysis in life cycle assessment: A case study
Life Cycle Assessment (LCA) is a methodology for assessing the potential environmental aspects associated with a product or service along its life cycle. However, in the case of energy technologies, it is suggested that the LCA of a product encompasses also further aspects other than environmental aspects and primary energy calculations. In particular, to optimize the reduction of raw materials during the whole life cycle, it is important to introduce the assessment of the irreversibility, applying the exergy analysis. In this paper, an integrated approach of exergy analysis and LCA is proposed, developing the Life-cycle quality index able to suggest potential exergy inefficiencies and the …