0000000000447199
AUTHOR
Jonathan Calderón
An advance Towards the Synthesis of Ag Nanorod Arrays with Controlled Surface Roughness for SERS Substrates
An innovative approach to produce silver nanorod (NRs) arrays with controlled morphological parameters and surface roughness is presented. The Ag NRs were obtained using a three-stage fabrication process based on the electron beam exposure of a metal-polymer nanocomposite resist on a transparent substrate and development, a post bake and then a series of non-electrochemical metallization steps. After each step the evolution of the Ag NRs was characterized by scanning electron microscopy (SEM) for morphology and optical transmittance (T) measurements for Localized Surface Plasmon Resonance (LSPR). The transmittance measurements were interpreted using models based on the Finite Element Method…
Polarimetric Plasmonic Sensing with Bowtie Nanoantenna Arrays
We propose a polarimetric plasmonic biosensor based on bowtie nanoantenna array transducers. Through numerical simulations, based on the finite element method (FEM), we study the phase retardation between the components of light polarized parallel and perpendicular to the major axis of the bowties within the arrays. From a design for high volumetric sensitivity at a wavelength of 780 nm, sensitivities ∼5 rad/RIU is obtained, corresponding to a detection limit of ∼10−7 when using a polarimetric readout platform. Similarly, surface sensitivity of the same array is evaluated by simulating the phase retardation changes induced by the coverage of bioreceptors and analytes of the metallic nanostr…