0000000000447217

AUTHOR

Roberto Frezzotti

B-physics computations from Nf=2 tmQCD

We present an accurate lattice QCD computation of the b-quark mass, the B and Bs decay constants, the B-mixing bag-parameters for the full four-fermion operator basis, as well as estimates for \xi and f_{Bq}\sqrt{B_q} extrapolated to the continuum limit and the physical pion mass. We have used Nf = 2 dynamical quark gauge configurations at four values of the lattice spacing generated by ETMC. Extrapolation in the heavy quark mass from the charm to the bottom quark region has been carried out using ratios of physical quantities computed at nearby quark masses, having an exactly known infinite mass limit.

research product

Up, down, strange and charm quark masses withNf=2+1+1twisted mass lattice QCD

Abstract We present a lattice QCD calculation of the up, down, strange and charm quark masses performed using the gauge configurations produced by the European Twisted Mass Collaboration with N f = 2 + 1 + 1 dynamical quarks, which include in the sea, besides two light mass degenerate quarks, also the strange and charm quarks with masses close to their physical values. The simulations are based on a unitary setup for the two light quarks and on a mixed action approach for the strange and charm quarks. The analysis uses data at three values of the lattice spacing and pion masses in the range 210 – 450 MeV , allowing for accurate continuum limit and controlled chiral extrapolation. The quark …

research product

Light meson physics from maximally twisted mass lattice QCD

40 pages, 5 figures, 8 tables, 3 appendix.-- PACS: 11.15.Ha; 12.38.Gc; 12.39.Fe

research product

B-physics from Nf=2 tmQCD: the Standard Model and beyond

Carrasco, Nuria et al.

research product

Kaon mixing beyond the SM from N-f=2 tmQCD and model independent constraints from the UTA

We present the first unquenched, continuum limit, lattice QCD results for the matrix elements of the operators describing neutral kaon oscillations in extensions of the Standard Model. Owing to the accuracy of our calculation on Delta S = 2 weak Hamiltonian matrix elements, we are able to provide a refined Unitarity Triangle analysis improving the bounds coming from model independent constraints on New Physics. In our non-perturbative computation we use a combination of N-f = 2 maximally twisted sea quarks and Osterwalder-Seiler valence quarks in order to achieve both O(a)-improvement and continuum-like renormalization properties for the relevant four-fermion operators. The calculation of t…

research product