0000000000447219

AUTHOR

Petros Dimopoulos

B-physics computations from Nf=2 tmQCD

We present an accurate lattice QCD computation of the b-quark mass, the B and Bs decay constants, the B-mixing bag-parameters for the full four-fermion operator basis, as well as estimates for \xi and f_{Bq}\sqrt{B_q} extrapolated to the continuum limit and the physical pion mass. We have used Nf = 2 dynamical quark gauge configurations at four values of the lattice spacing generated by ETMC. Extrapolation in the heavy quark mass from the charm to the bottom quark region has been carried out using ratios of physical quantities computed at nearby quark masses, having an exactly known infinite mass limit.

research product

BK-parameter fromNf=2twisted mass lattice QCD

We present an unquenched Nf=2 lattice computation of the B K parameter which controls K0-K0 oscillations. A partially quenched setup is employed with two maximally twisted dynamical (sea) light Wi ...

research product

Up, down, strange and charm quark masses withNf=2+1+1twisted mass lattice QCD

Abstract We present a lattice QCD calculation of the up, down, strange and charm quark masses performed using the gauge configurations produced by the European Twisted Mass Collaboration with N f = 2 + 1 + 1 dynamical quarks, which include in the sea, besides two light mass degenerate quarks, also the strange and charm quarks with masses close to their physical values. The simulations are based on a unitary setup for the two light quarks and on a mixed action approach for the strange and charm quarks. The analysis uses data at three values of the lattice spacing and pion masses in the range 210 – 450 MeV , allowing for accurate continuum limit and controlled chiral extrapolation. The quark …

research product

Light meson physics from maximally twisted mass lattice QCD

40 pages, 5 figures, 8 tables, 3 appendix.-- PACS: 11.15.Ha; 12.38.Gc; 12.39.Fe

research product

Topological susceptibility and η′ meson mass from Nf=2 lattice QCD at the physical point

In this paper we explore the computation of topological susceptibility and ${\ensuremath{\eta}}^{\ensuremath{'}}$ meson mass in ${N}_{f}=2$ flavor QCD using lattice techniques with a physical value of the pion mass as well as larger pion mass values. We observe that the physical point can be reached without a significant increase in the statistical noise. The mass of the ${\ensuremath{\eta}}^{\ensuremath{'}}$ meson can be obtained from both fermionic two point functions and topological charge density correlation functions, giving compatible results. With the pion mass dependence of the ${\ensuremath{\eta}}^{\ensuremath{'}}$ mass being flat we arrive at ${M}_{{\ensuremath{\eta}}^{\ensuremath…

research product

Non-perturbative renormalisation of left left four-fermion operators with Neuberger fermions

We outline a general strategy for the non-perturbative renormalisation of composite operators in discretisations based on Neuberger fermions, via a matching to results obtained with Wilson-type fermions. As an application, we consider the renormalisation of the four-quark operators entering the Delta S=1 and Delta S=2 effective Hamiltonians. Our results are an essential ingredient for the determination of the low-energy constants governing non-leptonic kaon decays.

research product

B-physics from Nf=2 tmQCD: the Standard Model and beyond

Carrasco, Nuria et al.

research product

Kaon mixing beyond the SM from N-f=2 tmQCD and model independent constraints from the UTA

We present the first unquenched, continuum limit, lattice QCD results for the matrix elements of the operators describing neutral kaon oscillations in extensions of the Standard Model. Owing to the accuracy of our calculation on Delta S = 2 weak Hamiltonian matrix elements, we are able to provide a refined Unitarity Triangle analysis improving the bounds coming from model independent constraints on New Physics. In our non-perturbative computation we use a combination of N-f = 2 maximally twisted sea quarks and Osterwalder-Seiler valence quarks in order to achieve both O(a)-improvement and continuum-like renormalization properties for the relevant four-fermion operators. The calculation of t…

research product

Flavour symmetry restoration and kaon weak matrix elements in quenched twisted mass QCD

We simulate two variants of quenched twisted mass QCD (tmQCD), with degenerate Wilson quarks of masses equal to or heavier than half the strange quark mass. We use Ward identities in order to measure the twist angles of the theory and thus check the quality of the tuning of mass parameters to a physics condition which stays constant as the lattice spacing is varied. Flavour symmetry breaking in tmQCD is studied in a framework of two fully twisted and two standard Wilson quark flavours, tuned to be degenerate in the continuum. Comparing pseudoscalar masses, obtained from connected quark diagrams made of tmQCD and/or standard Wilson quark propagators, we confirm that flavour symmetry breaking…

research product