0000000000448124

AUTHOR

M. Sarma

showing 3 related works from this author

Contactless generation of cavitation in high temperature liquid metals and its impact on particle dispersion in solidified iron and steel samples

2021

Abstract A recently developed method for the contactless magnetic generation of cavitation is demonstrated for high-melting-point metals. The approach is based on the floating-zone technique, which is truly contactless and crucible-free as it uses electromagnetic forces. Using this method, ultra-high-temperature ceramic particles, such as TiN, TiB2 and TiC, are admixed in liquid iron and 316L steel. The dispersion and particle refinement caused by cavitation treatment during melting and solidification are investigated. Magnetic fields up to 8 T that correspond to pressure oscillation amplitude of 0.83 MPa are used. The signal emitted by the collapsing bubbles is captured and visualized for …

0209 industrial biotechnologyMaterials scienceMetals and Alloyschemistry.chemical_element02 engineering and technologySignalIndustrial and Manufacturing EngineeringComputer Science ApplicationsMagnetic field020303 mechanical engineering & transports020901 industrial engineering & automation0203 mechanical engineeringchemistryModeling and SimulationCavitationvisual_artCeramics and Compositesvisual_art.visual_art_mediumParticleCeramicComposite materialDispersion (chemistry)TinIntensity (heat transfer)
researchProduct

Casting technology for ODS steels – dispersion of nanoparticles in liquid metals

2017

Dispersion of particles to produce metal matrix nanocomposites (MMNC) can be achieved by means of ultrasonic vibration of the melt using ultrasound transducers. However, a direct transfer of this method to produce steel composites is not feasible because of the much higher working temperature. Therefore, an inductive technology for contactless treatment by acoustic cavitation was developed. This report describes the samples produced to assess the feasibility of the proposed method for nano-particle separation in steel. Stainless steel samples with inclusions of TiB2, TiO2, Y2O3, CeO2, Al2O3 and TiN have been created and analyzed. Additional experiments have been performed using light metals…

010302 applied physicsNanocompositeMaterials scienceMetallurgychemistry.chemical_elementNanoparticleField strength02 engineering and technologySuperconducting magnet021001 nanoscience & nanotechnology01 natural scienceschemistryCasting (metalworking)Cavitation0103 physical sciences0210 nano-technologyTinDispersion (chemistry)IOP Conference Series: Materials Science and Engineering
researchProduct

Magnetically Induced Cavitation for the Dispersion of Particles in Liquid Metals

2018

A contactless excitation of cavitation is possible by superposition of induction heating with a static axial magnetic field. This creates an alternating electromagnetic body force in a liquid metal which in turn produces pressure oscillations. Using this method, the onset of cavitation has been clearly observed in various liquid metals (tin, zinc, aluminum, steel SAE 304) at pressure oscillations in the range of 28…50 kPa. The present study aims to extend the previous work by producing steel metal matrix composites (MMC) and assessing the feasibility of the proposed method for particle dispersion in steel. Stainless steel (SAE 316L) samples with different ceramic inclusions, e.g. TiN, Al2O3…

Liquid metalMaterials scienceInduction heatingchemistry.chemical_elementMicrostructurechemistryvisual_artCavitationvisual_art.visual_art_mediumParticleCeramicComposite materialDispersion (chemistry)Tin
researchProduct