Enhanced structural correlations accelerate diffusion in charge-stabilized colloidal suspensions
Theoretical calculations for colloidal charge-stabilized and hard sphere suspensions show that hydrodynamic interactions yield a qualitatively different particle concentration dependence of the short-time self-diffusion coefficient. The effect, however, is numerically small and hardly accessible by conventional light scattering experiments. Applying multiple-scattering decorrelation equipment and a careful data analysis we show that the theoretical prediction for charged particles is in agreement with our experimental results from aqueous polystyrene latex suspensions.