0000000000448615

AUTHOR

Evaldas Bubelis

showing 5 related works from this author

Overview of the HCPB Research Activities in EUROfusion

2018

In the framework of the EUROfusion’s Power Plant Physics and Technology, the working package breeding blanket (BB) aims at investigating four different BB concepts for an EU demonstration fusion reactor (DEMO). One of these concepts is the helium-cooled pebble bed (HCPB) BB, which is based on the use of pebble beds of lithiated ternary compounds and Be or beryllides as tritium breeder and multiplier materials, respectively, EUROFER97 as structural steel and He as coolant. This paper aims at giving an overview of the EU HCPB BB Research and Development (R&D) being developed at KIT, in collaboration with Wigner-RCP, BUTE-INT, and CIEMAT. The paper gives an outline of the HCPB BB design evolut…

Nuclear and High Energy PhysicsPower stationHelium-cooled pebble bed (HCPB)BlanketCondensed Matter Physics7. Clean energy01 natural sciences010305 fluids & plasmas13. Climate action0103 physical sciencesdemonstration fusion reactor (DEMO)Systems engineeringEUROfusion010306 general physicsDesign evolutiontritium breedingSettore ING-IND/19 - Impianti Nucleari
researchProduct

Preliminary CAD implementation of EU-DEMO primary heat transfer systems for HCPB breeding blanket option

2019

Abstract This paper focuses on the 3D CAD implementation of the pipework and the main equipment of the Primary Heat Transfer System of EU-DEMO fusion power plant. In particular, the systems related to the Helium-Cooled Pebble Bed Breeding Blanket option are considered here. During the pulse operation, the breeding blanket modules will be the main thermal power source; Divertor and the Vacuum Vessel will contribute in the definition of the total reactor power. All the In-Vessel generated power is rejected to the Power Conversion System through a molten salt Intermediate Heat Transport System. The latter is equipped with an Energy Storage System to allow for continuous operation also during t…

Continuous operation020209 energyNuclear engineeringThermal power station02 engineering and technologyBlanket01 natural sciences7. Clean energyPrimary heat transfer systemEnergy storage010305 fluids & plasmasITER0103 physical sciences0202 electrical engineering electronic engineering information engineeringGeneral Materials ScienceCivil and Structural EngineeringPipingMechanical EngineeringDivertorPiping designCoolantEU-DEMONuclear Energy and EngineeringHeat transferEnvironmental scienceHelium-Cooled Pebble Bed Breeding BlanketFusion Engineering and Design
researchProduct

An enhanced, near-term HCPB design as driver blanket for the EU DEMO

2019

The Helium Cooled Pebble Bed (HCPB) breeding blanket is a candidate as driver blanket for the EU DEMO. The reference design of the HCPB is based on a cooling plate “sandwich” arrangement built in Multi-Module Segments. This architecture significantly improved the tritium breeding performance (TBR = 1.15) and the plant circulating power (≈130 MW) compared to the former ITER-like “beer-box”-like design (TBR<1.10, plant circulating power>200 MW). However, several issues remain with this design, in which (1) the still large power required per He circulator (beyond the state-of-the-art for these components) and (2) the large tritium inventory foreseen in Be have been identified as the most…

Pressure dropDriver blanket; Enhanced HCPB; EU DEMO; Fuel-breeder pin; TBRComputer scienceEU DEMOMechanical EngineeringNuclear engineeringReference designCirculatorBlanket01 natural sciences7. Clean energy010305 fluids & plasmasFuel-breeder pinNuclear Energy and EngineeringEnhanced HCPB0103 physical sciencesTurbomachineryHeat transferGeneral Materials ScienceNeutronMultiplier (economics)Driver blanket010306 general physicsCivil and Structural EngineeringTBR
researchProduct

Pre-conceptual design of EU DEMO balance of plant systems: Objectives and challenges

2021

Abstract The European Research Roadmap to the Realisation of Fusion Energy foresees that the DEMO reactor is going to succeed ITER in the pathway towards the exploitation of nuclear fusion, achieving long plasma operation time, demonstrating tritium self-sufficiency and producing net electric output on an industrial scale. Therefore, its design must be more oriented towards the Balance of Plant (BoP) than it is in ITER. Since the early pre-conceptual phase of the DEMO project, emphasis has been laid on identifying the main requirements affecting the overall architecture of the BoP. For instance, specific efforts and proper solutions have been envisaged to cope with the pulsed nature of the …

Computer scienceHCPBBalance of plant7. Clean energy01 natural sciencesPhase (combat)010305 fluids & plasmasConceptual design0103 physical sciencesOperation timeGeneral Materials ScienceArchitecture010306 general physicsDEMOSettore ING-IND/19 - Impianti NucleariCivil and Structural Engineeringbalance of plant; DEMO; HCPB; WCLLBalance of plantMechanical EngineeringEuropean researchIndustrial scaleWCLLDesign phaseNuclear Energy and Engineering13. Climate actionSystems engineeringBalance of plant DEMO HCPB WCLL
researchProduct

Progress in EU Breeding Blanket design and integration

2018

Abstract In Europe (EU), in the frame of the EUROfusion consortium activities, four Breeding Blanket (BB) concepts are being developed with the aim of fulfilling the performances required by a near-term fusion power demonstration plant (DEMO) in terms of tritium self-sufficiency and electricity production. The four blanket options cover a wide range of technological possibilities, as water and helium are considered as possible coolants and solid ceramic breeder in combination with beryllium and PbLi as tritium breeder and neutron multipliers. The strategy for the BB selection and operation has to account for the challenging schedule of the EU DEMO, the ambitious operational requirements of …

Computer scienceIn-vessel and ex-vessel componentsBlanketContinuous design7. Clean energy01 natural sciencesBalance of plan010305 fluids & plasmas[SPI]Engineering Sciences [physics]Balance of plant; Breeding Blanket; In-vessel and ex-vessel components; Civil and Structural Engineering; Nuclear Energy and Engineering; Materials Science (all); Mechanical Engineering0103 physical sciencesGeneral Materials Science010306 general physicsSettore ING-IND/19 - Impianti NucleariCivil and Structural EngineeringBalance of plantBreeding BlanketMechanical EngineeringFrame (networking)Schedule (project management)tIn-vessel and ex-vessel componentsElectricity generationNuclear Energy and Engineering13. Climate actionInterfacingSystems engineeringDemonstration PlantIn-vessel and ex-vessel componentMaterials Science (all)Design evolution
researchProduct