0000000000448694

AUTHOR

Yuichi Nagata

A penalty-based edge assembly memetic algorithm for the vehicle routing problem with time windows

In this paper, we present an effective memetic algorithm for the vehicle routing problem with time windows (VRPTW). The paper builds upon an existing edge assembly crossover (EAX) developed for the capacitated VRP. The adjustments of the EAX operator and the introduction of a novel penalty function to eliminate violations of the time window constraint as well as the capacity constraint from offspring solutions generated by the EAX operator have proven essential to the heuristic's performance. Experimental results on Solomon's and Gehring and Homberger benchmarks demonstrate that our algorithm outperforms previous approaches and is able to improve 184 best-known solutions out of 356 instance…

research product

Efficient Local Search Limitation Strategies for Vehicle Routing Problems

In this paper we examine five different strategies for limiting the local search neighborhoods in the context of vehicle routing problems. The vehicle routing problem deals with the assignment of a set of transportation orders to a fleet of vehicles, and the sequencing of stops for each vehicle to minimize transportation costs. The examined strategies are applied to three standard neighborhoods and implemented in a recently suggested powerful memetic algorithm. Experimental results on 26 well-known benchmark problems indicate significant speedups of almost 80% without worsening the solution quality. On the contrary, in 12 cases new best solutions were obtained.

research product

The mixed capacitated general routing problem with turn penalties

In this paper we deal with the mixed capacitated general routing problem with turn penalties. This problem generalizes many important arc and node routing problems, and it takes into account turn penalties and forbidden turns, which are crucial in many real-life applications, such as mail delivery, waste collection and street maintenance operations. Through a polynomial transformation of the considered problem into a Generalized Vehicle routing problem, we suggest a new approach for solving this new problem by transforming it into an Asymmetric Capacitated Vehicle routing problem. In this way, we can solve the new problem both optimally and heuristically using existing algorithms. A powerfu…

research product

A powerful route minimization heuristic for the vehicle routing problem with time windows

We suggest an efficient route minimization heuristic for the vehicle routing problem with time windows. The heuristic is based on the ejection pool, powerful insertion and guided local search strategies. Experimental results on the Gehring and Homberger's benchmarks demonstrate that our algorithm outperforms previous approaches and found 18 new best-known solutions.

research product