0000000000448773

AUTHOR

Aida Gainutdinova

showing 5 related works from this author

Very Narrow Quantum OBDDs and Width Hierarchies for Classical OBDDs

2014

In the paper we investigate a model for computing of Boolean functions – Ordered Binary Decision Diagrams (OBDDs), which is a restricted version of Branching Programs. We present several results on the comparative complexity for several variants of OBDD models. We present some results on the comparative complexity of classical and quantum OBDDs. We consider a partial function depending on a parameter k such that for any k > 0 this function is computed by an exact quantum OBDD of width 2, but any classical OBDD (deterministic or stable bounded-error probabilistic) needs width 2 k + 1. We consider quantum and classical nondeterminism. We show that quantum nondeterminism can be more efficient …

Discrete mathematicsImplicit functionBinary decision diagram010102 general mathematics02 engineering and technologyFunction (mathematics)Computer Science::Artificial IntelligenceComputer Science::Computational Complexity01 natural sciencesCombinatoricsNondeterministic algorithmComputer Science::Logic in Computer SciencePartial function0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processing0101 mathematicsBoolean functionQuantumQuantum computerMathematics
researchProduct

Nondeterministic Unitary OBDDs

2017

We investigate the width complexity of nondeterministic unitary OBDDs (NUOBDDs). Firstly, we present a generic lower bound on their widths based on the size of strong 1-fooling sets. Then, we present classically “cheap” functions that are “expensive” for NUOBDDs and vice versa by improving the previous gap. We also present a function for which neither classical nor unitary nondeterminism does help. Moreover, based on our results, we present a width hierarchy for NUOBDDs. Lastly, we provide the bounds on the widths of NUOBDDs for the basic Boolean operations negation, union, and intersection.

Discrete mathematicsHierarchy (mathematics)Intersection (set theory)010102 general mathematics0102 computer and information sciencesFunction (mathematics)Computer Science::Computational Complexity01 natural sciencesUpper and lower boundsUnitary stateNondeterministic algorithmCombinatoricsNegation010201 computation theory & mathematicsBoolean operations in computer-aided design0101 mathematicsMathematics
researchProduct

Unary Probabilistic and Quantum Automata on Promise Problems

2015

We continue the systematic investigation of probabilistic and quantum finite automata (PFAs and QFAs) on promise problems by focusing on unary languages. We show that bounded-error QFAs are more powerful than PFAs. But, in contrary to the binary problems, the computational powers of Las-Vegas QFAs and bounded-error PFAs are equivalent to deterministic finite automata (DFAs). Lastly, we present a new family of unary promise problems with two parameters such that when fixing one parameter QFAs can be exponentially more succinct than PFAs and when fixing the other parameter PFAs can be exponentially more succinct than DFAs.

State-transition matrixDiscrete mathematicsDeterministic finite automatonUnary operationMarkov chainUnary languageProbabilistic logicQuantum finite automataBinary numberComputer Science::Computational ComplexityComputer Science::Formal Languages and Automata TheoryMathematics
researchProduct

Nondeterministic unitary OBDDs

2016

We investigate the width complexity of nondeterministic unitary OBDDs (NUOBDDs). Firstly, we present a generic lower bound on their widths based on the size of strong 1-fooling sets. Then, we present classically cheap functions that are expensive for NUOBDDs and vice versa by improving the previous gap. We also present a function for which neither classical nor unitary nondeterminism does help. Moreover, based on our results, we present a width hierarchy for NUOBDDs. Lastly, we provide the bounds on the widths of NUOBDDs for the basic Boolean operations negation, union, and intersection.

FOS: Computer and information sciencesComputer Science - Computational ComplexityQuantum PhysicsFormal Languages and Automata Theory (cs.FL)FOS: Physical sciencesComputer Science - Formal Languages and Automata TheoryComputational Complexity (cs.CC)Computer Science::Computational ComplexityQuantum Physics (quant-ph)
researchProduct

New results on classical and quantum counter automata

2019

We show that one-way quantum one-counter automaton with zero-error is more powerful than its probabilistic counterpart on promise problems. Then, we obtain a similar separation result between Las Vegas one-way probabilistic one-counter automaton and one-way deterministic one-counter automaton. We also obtain new results on classical counter automata regarding language recognition. It was conjectured that one-way probabilistic one blind-counter automata cannot recognize Kleene closure of equality language [A. Yakaryilmaz: Superiority of one-way and realtime quantum machines. RAIRO - Theor. Inf. and Applic. 46(4): 615-641 (2012)]. We show that this conjecture is false, and also show several s…

FOS: Computer and information sciencesComputer Science - Computational ComplexityQuantum PhysicsTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESTheoryofComputation_COMPUTATIONBYABSTRACTDEVICESFormal Languages and Automata Theory (cs.FL)FOS: Physical sciencesComputer Science - Formal Languages and Automata TheoryComputational Complexity (cs.CC)Quantum Physics (quant-ph)Nonlinear Sciences::Cellular Automata and Lattice GasesComputer Science::Formal Languages and Automata Theory
researchProduct