0000000000448774
AUTHOR
Abuzer Yakary��lmaz
Finite automata with advice tapes
We define a model of advised computation by finite automata where the advice is provided on a separate tape. We consider several variants of the model where the advice is deterministic or randomized, the input tape head is allowed real-time, one-way, or two-way access, and the automaton is classical or quantum. We prove several separation results among these variants, demonstrate an infinite hierarchy of language classes recognized by automata with increasing advice lengths, and establish the relationships between this and the previously studied ways of providing advice to finite automata.
Nondeterministic unitary OBDDs
We investigate the width complexity of nondeterministic unitary OBDDs (NUOBDDs). Firstly, we present a generic lower bound on their widths based on the size of strong 1-fooling sets. Then, we present classically cheap functions that are expensive for NUOBDDs and vice versa by improving the previous gap. We also present a function for which neither classical nor unitary nondeterminism does help. Moreover, based on our results, we present a width hierarchy for NUOBDDs. Lastly, we provide the bounds on the widths of NUOBDDs for the basic Boolean operations negation, union, and intersection.
The minimal probabilistic and quantum finite automata recognizing uncountably many languages with fixed cutpoints
Discrete Mathematics & Theoretical Computer Science ; vol. 22 no. 1 ; Automata, Logic and Semantics ; 1365-8050
Real-Time Vector Automata
We study the computational power of real-time finite automata that have been augmented with a vector of dimension k, and programmed to multiply this vector at each step by an appropriately selected $k \times k$ matrix. Only one entry of the vector can be tested for equality to 1 at any time. Classes of languages recognized by deterministic, nondeterministic, and "blind" versions of these machines are studied and compared with each other, and the associated classes for multicounter automata, automata with multiplication, and generalized finite automata.
Postselecting probabilistic finite state recognizers and verifiers
In this paper, we investigate the computational and verification power of bounded-error postselecting realtime probabilistic finite state automata (PostPFAs). We show that PostPFAs using rational-valued transitions can do different variants of equality checks and they can verify some nonregular unary languages. Then, we allow them to use real-valued transitions (magic-coins) and show that they can recognize uncountably many binary languages by help of a counter and verify uncountably many unary languages by help of a prover. We also present some corollaries on probabilistic counter automata.
Automata and Quantum Computing
Quantum computing is a new model of computation, based on quantum physics. Quantum computers can be exponentially faster than conventional computers for problems such as factoring. Besides full-scale quantum computers, more restricted models such as quantum versions of finite automata have been studied. In this paper, we survey various models of quantum finite automata and their properties. We also provide some open questions and new directions for researchers. Keywords: quantum finite automata, probabilistic finite automata, nondeterminism, bounded error, unbounded error, state complexity, decidability and undecidability, computational complexity