0000000000451470
AUTHOR
Ernest Mendrela
Analysis of Torque Developed in Axial Flux, Single-Phase Brushless DC Motor With Salient-Pole Stator
An analysis of the torque developed by a single-phase disc brushless permanent magnet motor with salient-pole stator is presented. The machine represents a new family of brushless disc motors with the starting torque issue appearing to be most challenging. To produce a starting torque, the permanent magnets on one of the rotor discs are distributed nonuniformly. However, this significantly distorts a shape of the cogging torque versus rotational angle characteristic which, in turn, affects a waveform of the overall torque. A three-dimensional (3-D) finite-element model is used for the purpose of determining of angular variations of the torque developed by the motor. To find how the torque v…
An Influence of Permanent Magnet Shape on the Torque Ripple of Disc-Type Brushless DC Motors
An analysis of the torque developed by two types of the disc-type permanent magnet (PM), brushless DC motors: slotted torus motor and motor with stator salient poles is presented. The calculations were performed using three-dimensional finite element method (FEM). Two shapes of PMs are analyzed: trapezoidal and rectangular. The results show that application of rectangular shaped PMs provides significant reduction of the torque ripple in both considered motors.