0000000000451740

AUTHOR

Nima Pahlevan

0000-0002-5454-5212

Impact of Spectral Resolution on Quantifying Cyanobacteria in Lakes and Reservoirs: A Machine-Learning Assessment

Cyanobacterial harmful algal blooms are an increasing threat to coastal and inland waters. These blooms can be detected using optical radiometers due to the presence of phycocyanin (PC) pigments. The spectral resolution of best-available multispectral sensors limits their ability to diagnostically detect PC in the presence of other photosynthetic pigments. To assess the role of spectral resolution in the determination of PC, a large (N = 905) database of colocated in situ radiometric spectra and PC are employed. We first examine the performance of selected widely used machine-learning (ML) models against that of benchmark algorithms for hyperspectral remote sensing reflectance ( $R_{{rs}})$…

research product

Advancing cyanobacteria biomass estimation from hyperspectral observations: Demonstrations with HICO and PRISMA imagery

Retrieval of the phycocyanin concentration (PC), a characteristic pigment of, and proxy for, cyanobacteria biomass, from hyperspectral satellite remote sensing measurements is challenging due to uncertainties in the remote sensing reflectance (?R) resulting from atmospheric correction and instrument radiometric noise. Although several individual algorithms have been proven to capture local variations in cyanobacteria biomass in specific regions, their performance has not been assessed on hyperspectral images from satellite sensors. Our work leverages a machine-learning model, Mixture Density Networks (MDNs), trained on a large (N = 939) dataset of collocated in situ chlorophyll-a concentrat…

research product