0000000000452542

AUTHOR

Silvia Greses

Microbial community characterization during anaerobic digestion of Scenedesmus spp. under mesophilic and thermophilic conditions

[EN] Microbial communities were thoroughly characterized in a mesophilic anaerobic membrane bioreactor (AnMBR) and a thermophilic continuous stirred tank reactor (CSTR), which were both treating recalcitrant microalgal biomass dominated by Scenedesmus. 16S rRNA amplicon sequencing analysis was performed when the AnMBR achieved 70% algal biodegradation and revealed high microbial diversity, probably due to the high solid retention time (SRT) of the AnMBR configuration. The bacterial community consisted of Chloroflexi (27.9%), WWE1 (19.0%) and Proteobacteria (15.4%) as the major phyla, followed by Spirochaetes (7.7%), Bacteroidetes (5.9%) and Firmicutes (3.6%). These phyla are known to exhibi…

research product

Effect of long residence time and high temperature over anaerobic biodegradation of Scenedesmus microalgae grown in wastewater

[EN] Anaerobic digestion of indigenous Scenedesmus spp. microalgae was studied in continuous lab-scale anaerobic reactors at different temperatures (35 degrees C and 55 degrees C), and sludge retention time - SRT (50 and 70 days). Mesophilic digestion was performed in a continuous stirred-tank reactor (CSTR) and in an anaerobic membrane bioreactor (AnMBR). Mesophilic CSTR operated at 50 days SRT only achieved 11.9% of anaerobic biodegradability whereas in the AnMBR at 70 days SRT and 50 days HRT reached 39.5%, which is even higher than the biodegradability achieved in the thermophilic CSTR at 50 days SRT (30.4%). Microbial analysis revealed a high abundance of cellulose-degraders in both re…

research product

AnMBR, reclaimed water and fertigation: Two case studies in Italy and Spain to assess economic and technological feasibility and CO2 emissions within the EU Innovation Deal initiative

[EN] The use of anaerobic membrane bioreactor (AnMBR) technology on urban wastewater can help to alleviate droughts, by reusing the water and nutrients embedded in the effluent in agriculture (fertigation) in line with Circular Economy principles. The combination of AnMBR and fertigation reduces CO2 emissions due to the organic matter valorization and the partial avoidance of mineral fertilizer requirements. However, both AnMBR and fertigation still face technological and regulatory barriers that need to be overcome. These bottlenecks were tackled within the first Innovation Deal approved by the European Commission in 2016, and gave rise to several case studies on water reuse systems. The r…

research product

Thermophilic anaerobic conversion of raw microalgae: Microbial community diversity in high solids retention systems

[EN] The potential of microbial communities for efficient anaerobic conversion of raw microalgae was evaluated in this work. A long-term operated thermophilic digester was fed with three different Organic Loading Rates (OLR) (0.2, 0.3 and 0.4¿g·L¿1·d¿1) reaching 32¿41% biodegradability values. The microbial community analysis revealed a remarkable presence of microorganisms that exhibit high hydrolytic capabilities such as Thermotogae (~44.5%), Firmicutes (~17.6%) and Dictyoglomi, Aminicenantes, Atribacteria and Planctomycetes (below ~5.5%) phyla. The suggested metabolic role of these phyla highlights the importance of protein hydrolysis and fermentation when only degrading microalgae. The …

research product