0000000000452558
AUTHOR
Jan Kucera
Nonlinear Feedback Control and Stability Analysis of a Proof-of-Work Blockchain
In this paper a novel feedback controller and stability analysis of a blockchain implementation is developed by using a control engineering perspective. The controller output equals the difficulty adjustment in the mining process while the feedback variable is the average block time over a certain time period. The computational power (hash rate) of the miners is considered a disturbance in the model. The developed controller is tested against a simulation model with constant disturbance, step and ramp responses as well as with a high-frequency sinusoidal disturbance. Stability and a fast response is demonstrated in all these cases with a controller which adjusts it's output at every new blo…
Tail Removal Block Validation: Implementation and Analysis
In this paper a solution for the removal of long tail blocktimes in a proof-of-work blockchain is proposed, implemented and analysed. Results from the mainnet of the Bismuth blockchain demonstrate that the variances in the key variables, difficulty level and blocktime, were approximately halved after the tail removal code was enabled. Low variances in difficulty and blocktimes are desirable for timely execution of transactions in the network as well as reduction of unwanted oscillations in the feedback control problem.