0000000000453911

AUTHOR

M. Lidón López

A pH-tunable nanofluidic diode: electrochemical rectification in a reconstituted single ion channel.

We report pH-dependent electrochemical rectification in a protein ion channel (the bacterial porin OmpF) reconstituted on a planar phospholipid membrane. The measurements performed at single-channel level show that the electric current is controlled by the protein fixed charge and it can be tuned by adjusting the local pH. Under highly asymmetric pH conditions, the channel behaves like a liquid diode. Unlike other nanofluidic devices that display also asymmetric conductance, here the microscopic charge distribution of the system can be explored by using the available high-resolution (2.4 A) channel crystallographic structure. Continuum electrostatics calculations confirm the hypothesized bi…

research product

Central role of the observable electric potential in transport equations.

Nonequilibrium systems are usually studied in the framework of transport equations that involve the true electric potential (TEP), a nonobservable variable. Nevertheless another electric potential, the observable electric potential (OEP), may be defined to construct a useful set of transport equations. In this paper several basic characteristics of the OEP are deduced and emphasized: (i) the OEP distribution depends on thermodynamic state of the solution, (ii) the observable equations have a reference value for all other transport equations, (iii) the bridge that connects the OEP with a certain TEP is usually defined by the ion activity coefficient, (iv) the electric charge density is a non…

research product