0000000000454536

AUTHOR

Simonetta Corsolini

The trophic transfer of persistent pollutants (HCB, DDTs, PCBs) within polar marine food webs.

Biomagnification (increase in contaminant concentrations at successively higher levels of trophic web), is a process that can transversally impair biodiversity and human health. Most research shows that biomagnification should be higher at poles with northern sites having a major tendency to biomagnify Persistent Organic Pollutants (POPs) through their marine food webs. We investigated the biomagnification degree into two marine trophic webs combining carbon and nitrogen stable isotopes and POP analyses. We showed that the Antarctic trophic web was more depleted than the sub-Arctic one and the differences highlighted for the basal part could explain the difference in length between them. Co…

research product

HCB, p,p'-DDE and PCB ontogenetic transfer and magnification in bluefin tuna (Thunnus thynnus) from the Mediterranean Sea.

The bluefin tuna, Thunnus thynnus (Linnaeus 1758), is biologically and economically important in the Atlantic--Mediterranean ecosystems. Bluefin tuna feed on diverse food items depending on their age, thus they occupy different trophic levels during their lifespan. Hexachlorobenzene (HCB), p,p'-DDE and polychlorinated biphenyls (PCBs) are well-known persistent organic pollutants (POPs) in the Mediterranean basin. The relationship between stable isotopes of nitrogen (N) and the POP residue levels in tissues has recently increased knowledge on the link between the trophic levels and the contaminant accumulation. Trophic levels were estimated by using 15N/14N ratio (delta15N) and HCB, p,p'-DDE…

research product

Monitoring of persistent organic pollutants in the polar regions: knowledge gaps & gluts through evidence mapping

Persistent organic pollutants (POPs) are widespread compounds that accumulating in polar regions canalise through trophic webs. Although several dozens of studies have been carried out in the last decades, the information is generally scattered across a large number of literature sources. This does not allow an efficient synthesis and constraints our understanding on how address future monitoring plans and environmental conservation strategies on the Polar Regions with respect to POPs. Thus, here, we present the outcome of a systematic map (SM) to scope, screen and chart evidences from literature dealing with POPs in Polar regions. The SMs strive to produce rigorous guidelines and have rece…

research product