MODERATE DEVIATION PRINCIPLES FOR BIFURCATING MARKOV CHAINS: CASE OF FUNCTIONS DEPENDENT OF ONE VARIABLE
The main purpose of this article is to establish moderate deviation principles for additive functionals of bifurcating Markov chains. Bifurcating Markov chains are a class of processes which are indexed by a regular binary tree. They can be seen as the models which represent the evolution of a trait along a population where each individual has two offsprings. Unlike the previous results of Bitseki, Djellout \& Guillin (2014), we consider here the case of functions which depend only on one variable. So, mainly inspired by the recent works of Bitseki \& Delmas (2020) about the central limit theorem for general additive functionals of bifurcating Markov chains, we give here a moderate deviatio…