0000000000454653

AUTHOR

Lauri Oksanen

showing 4 related works from this author

Recovery of time-dependent coefficients from boundary data for hyperbolic equations

2019

We study uniqueness of the recovery of a time-dependent magnetic vector-valued potential and an electric scalar-valued potential on a Riemannian manifold from the knowledge of the Dirichlet to Neumann map of a hyperbolic equation. The Cauchy data is observed on time-like parts of the space-time boundary and uniqueness is proved up to the natural gauge for the problem. The proof is based on Gaussian beams and inversion of the light ray transform on Lorentzian manifolds under the assumptions that the Lorentzian manifold is a product of a Riemannian manifold with a time interval and that the geodesic ray transform is invertible on the Riemannian manifold.

GeodesicDirichlet-to-Neumann maplight ray transformmagnetic potentialBoundary (topology)CALDERON PROBLEM01 natural sciencesGaussian beamMathematics - Analysis of PDEsFOS: Mathematics111 Mathematics[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]Uniqueness0101 mathematicsMathematics::Symplectic GeometryMathematical PhysicsMathematicsX-ray transformSTABILITYinverse problemsMathematical analysisStatistical and Nonlinear PhysicsRiemannian manifoldX-RAY TRANSFORMWave equationMathematics::Geometric TopologyManifoldTENSOR-FIELDS010101 applied mathematicsUNIQUE CONTINUATIONGeometry and TopologyMathematics::Differential GeometryWAVE-EQUATIONSHyperbolic partial differential equationAnalysis of PDEs (math.AP)
researchProduct

The Light Ray transform in Stationary and Static Lorentzian geometries

2019

Given a Lorentzian manifold, the light ray transform of a function is its integrals along null geodesics. This paper is concerned with the injectivity of the light ray transform on functions and tensors, up to the natural gauge for the problem. First, we study the injectivity of the light ray transform of a scalar function on a globally hyperbolic stationary Lorentzian manifold and prove injectivity holds if either a convex foliation condition is satisfied on a Cauchy surface on the manifold or the manifold is real analytic and null geodesics do not have cut points. Next, we consider the light ray transform on tensor fields of arbitrary rank in the more restrictive class of static Lorentzia…

Mathematics - Differential GeometryGeodesicinverse problems010102 general mathematicsMathematical analysislight ray transform01 natural sciencesRayFoliationManifoldinversio-ongelmatTensor field010101 applied mathematicsCauchy surfaceMathematics - Analysis of PDEsDifferential geometryDifferential Geometry (math.DG)FOS: Mathematicswave equationGeometry and TopologyMathematics::Differential Geometry0101 mathematicsScalar fieldMathematicsAnalysis of PDEs (math.AP)
researchProduct

Inverse problems in imaging and engineering science

2020

lcsh:T57-57.97Applied Mathematicslcsh:Applied mathematics. Quantitative methodsInverse problemIndustrial engineeringMathematical PhysicsAnalysisMathematicsMathematics in Engineering
researchProduct

Inverse problems for real principal type operators

2020

We consider inverse boundary value problems for general real principal type differential operators. The first results state that the Cauchy data set uniquely determines the scattering relation of the operator and bicharacteristic ray transforms of lower order coefficients. We also give two different boundary determination methods for general operators, and prove global uniqueness results for determining coefficients in nonlinear real principal type equations. The article presents a unified approach for treating inverse boundary problems for transport and wave equations, and highlights the role of propagation of singularities in the solution of related inverse problems.

Mathematics - Differential GeometryMathematics - Analysis of PDEsDifferential Geometry (math.DG)FOS: MathematicsAnalysis of PDEs (math.AP)
researchProduct