0000000000454703

AUTHOR

Silvia Crognale

0000-0001-5249-7053

showing 2 related works from this author

Spoilage of oat bran by sporogenic microorganisms revived from soil buried 4000 years ago in Iranian archaeological site

2015

Abstract The Bronze Age archaeological site of Shahr-i Sokhta (30° 39′ N; 61° 24’ E), located today in southeastern Iran, Sistan region, is a special archaeological deposit in which the exceptional preservation of human, plant and animal remains, due to the dry climate of the region, can provide detailed information on one of the first complex proto-urban societies. In recent years, there has been growing interest in changes in local climate and environment as major reasons why the settlement was abandoned about 4000 years ago. Food shortage has been regarded as a direct effect of these changes. No attention has been paid to the potential health hazards associated with ancient urban/domesti…

biologyMicroorganismFood spoilageFungifood and beveragesBacillusSporeAspergillus flavusOat branbiology.organism_classificationSettore BIO/19 - Microbiologia GeneralePalynologyArchaeologyMicrobiologyArchaeobotany Bacillus sp. Fungi Oat bran Palynology Phylogenetic tree SporeSporeBiomaterialsPenicilliumBotanyBacillus sp.ArchaeobotanyEnergy sourceWaste Management and DisposalCladosporiumPhylogenetic tree
researchProduct

Aerobic growth of Rhodococcus aetherivorans BCP1 using selected naphthenic acids as the sole carbon and energy sources

2018

Naphthenic acids (NAs) are an important group of toxic organic compounds naturally occurring in hydrocarbon deposits. This work shows that Rhodococcus aetherivorans BCP1 cells not only utilize a mixture of eight different NAs (8XNAs) for growth but they are also capable of marked degradation of two model NAs, cyclohexanecarboxylic acid (CHCA) and cyclopentanecarboxylic acid (CPCA) when supplied at concentrations from 50 to 500 mgL−1 . The growth curves of BCP1 on 8XNAs, CHCA, and CPCA showed an initial lag phase not present in growth on glucose, which presumably was related to the toxic effects of NAs on the cell membrane permeability. BCP1 cell adaptation responses that allowed survi…

0301 basic medicineMicrobiology (medical)Inclusion bodie030106 microbiologylcsh:QR1-502Settore BIO/19 - Microbiologia Generale7. Clean energyMicrobiologylcsh:Microbiology03 medical and health scienceschemistry.chemical_compoundBiosynthesisRhodococcus aetherivorans naphthenic acids stress response b-oxidation transmission electron microscopy fatty acids methyl esters inclusion bodiesnaphthenic acidsBeta oxidationchemistry.chemical_classificationbiologyStress responseRhodococcus aetherivoranNaphthenic acidCyclohexanecarboxylic acidbiology.organism_classificationRhodococcus aetherivoranschemistryBiochemistryFatty acids methyl esterβ-oxidationfatty acids methyl estersEnergy sourceRhodococcusBacteriaIntracellularTransmission electron microscopyPolyunsaturated fatty acid
researchProduct