DNA binding, adduct characterisation and metabolic activation of aflatoxin B1 catalysed by isolated rat liver parenchymal, Kupffer and endothelial cells.
In vitro studies with rat liver parenchymal, Kupffer and endothelial cells isolated from male Sprague-Dawley rats were undertaken to investigate cell-specific bioactivation of aflatoxin B1, DNA binding and adduct formation. In the mutagenicity studies, using homogenates of all three separated liver cell populations (co-incubated with NADP+ and glucose-6-phosphate as cofactors for the cytochrome P-450 monooxygenase system) parenchymal, Kupffer and endothelial cells were able to activate aflatoxin B1 to a metabolite mutagenic to Salmonella typhimurium TA 98. In the case of nonparenchymal cells (i.e. Kupffer and endothelial cells) 10-fold higher concentrations of aflatoxin B1 had to be used to…